
Available at: http://hdl.handle.net/2078.1/thesis:45644 [Downloaded 2024/06/03 at 10:21:10]

"Model and Play Logic Puzzles within Ludii"

Accou, Pierre

ABSTRACT

Deduction puzzles have become increasingly popular in recent years, and are now an integral part of
everyone's daily lives. However, there is still no system capable of representing them all effectively. Ludii
offers a solution with its ludemic approach. Ludii is a framework for the modelling and playability of games
of various categories. This thesis focuses on the modelling of various deduction puzzles belonging to
different categories using this method. The aim is to optimise these modelling methods so that they can
be used later by different solvers. Various tests and experiments will be carried out to demonstrate the
effectiveness of these models.

CITE THIS VERSION

Accou, Pierre. Model and Play Logic Puzzles within Ludii. Ecole polytechnique de Louvain, Université
catholique de Louvain, 2024. Prom. : Piette, Eric. http://hdl.handle.net/2078.1/thesis:45644

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

Model and Play
Logic Puzzles
within Ludii

Author: Pierre ACCOU
Supervisor: Éric PIETTE
Readers: Kim MENS, Achille MORENVILLE, Julien LIENARD
Academic year 2023–2024
Master [60] in Computer Science

iii

Contents

Acknowledgments vii

1 Introduction 1

2 Background 3
2.1 The puzzles . 3
2.2 Modelling and solving deduction puzzles 5
2.3 Ludii & the ludemic approach . 6

2.3.1 Origins of Ludii . 9
2.3.2 The ludemic approach . 11
2.3.3 Ludii Data Structure . 14
2.3.4 Ludii & Deduction Puzzle . 15

3 Deduction puzzle in ludii 17
3.1 The puzzles . 17

3.1.1 Sudoku and his variants . 17
3.1.2 Kakuro . 19
3.1.3 Magic Square & Magic Hexagon 19
3.1.4 N Queens . 19
3.1.5 Fill A Pix . 20
3.1.6 Futoshiki . 21
3.1.7 Slitherlink . 21
3.1.8 Latin Square . 22
3.1.9 Squaro . 22
3.1.10 Takuzu . 22

3.2 Graphical representations . 23
3.3 Ludemes and puzzle mechanisms. 24

3.3.1 IsSolved . 24
3.3.2 Satisfy . 24
3.3.3 IsCount . 24
3.3.4 IsSum . 25
3.3.5 AllDifferent . 25

4 New Rules and New Deduction Puzzle 27
4.1 Ludemes updated . 27

4.1.1 IsSum . 27
4.1.2 IsCount . 27
4.1.3 SuperLudeme Is . 29

iv Contents

4.2 New Ludemes . 29
4.2.1 IsTilesComplete . 30
4.2.2 IsCountEmpty . 30
4.2.3 IsValidDirection . 31
4.2.4 IsMatch . 31
4.2.5 IsCrossed. 32
4.2.6 IsDistinct. 32
4.2.7 IsConnex . 32
4.2.8 Super Ludeme At. 33
4.2.9 AtMost & AtLeast . 33
4.2.10 AllHintDifferent . 33

4.3 The new puzzles . 33
4.3.1 The Sudoku Variants . 34
4.3.2 Other puzzles . 39
4.3.3 Akari. 40
4.3.4 Hitori . 41
4.3.5 Ripple Effect . 41
4.3.6 Hashiwokakero . 42
4.3.7 Nonogram . 43
4.3.8 Color Nonogram . 44
4.3.9 Hexagonal Nonogram . 45
4.3.10 Masyu . 45
4.3.11 Kurodoko . 46
4.3.12 Usowan . 47
4.3.13 Big Tour . 48
4.3.14 Buraitoraito . 48
4.3.15 Tilepaint . 49

4.4 Graphic additions . 49
4.4.1 what already exists . 49
4.4.2 Changes to the system . 51
4.4.3 New styles . 52

4.5 Ludemeplex . 53

5 Testing and Experimentation 55
5.1 The tests . 55

5.1.1 Integrity Test. 55
5.1.2 The JUnitTests . 56

5.2 Experiments . 56
5.2.1 The size of the challenge . 56
5.2.2 The number of movements in 40 seconds. 57
5.2.3 Analysis and similarity . 60
5.2.4 The number of tokens per representation 61

Contents v

6 Future work in connection with this thesis 63
6.1 General Game Playing and Constraint Programming to Solve any Logic

Puzzles: Tom Doumont’s Thesis . 63
6.2 Possible future work . 63

6.2.1 Addition of many other games and new rules 63
6.2.2 Creating AI to solve puzzles . 66
6.2.3 Generating new instances . 66

7 Conclusion 67

Bibliography 69

Appendix 73
7.1 Appendix A : Result experiement size of challenge 73
7.2 Appendix B : Result experiment the number of token 77
7.3 Appendix C : All the deduction puzzles in Ludii 78

vii

Acknowledgments

At the end of our dissertation, we would like to thank all the people who helped us in any
way with our research.

First of all, to Professor Eric Piette, our promoter, for his invaluable advice and all the time
he gave us to complete our work. His availability and help were more than essential to the
completion of this thesis.

We would also like to thank Professor Kim Mens, Julien Liénard and Achille Morenville for
agreeing to sit on our jury to assess this thesis.

We would like to express our gratitude to Achille Morenville for helping us set up our
integrity tests on our personal GitHub.

We would also like to thank Joshua Deraeck for his help in proofreading this thesis report.

We would like to express our gratitude to Matthew Stephenson for his help in the graphics
part of the system.

Finally, we would like to thank our friends and family for their support over the past year.

The Deepl tool was used to help us formulate certain sentences. The ChatGPT tool was
used to help us with the layout of the report and the implementation of regular expressions.

1

1

1
Introduction

Puzzles have become quite popular and can be found in general magazines, specialized
puzzle magazines, and even mobile applications. Companies like Nikoli edit and publish
new puzzles and puzzle instances. These puzzles have become so popular that some people
have specialised in certain puzzles (like Wayne Gould1 with Sudoku). As shown in [15],
Nikoli is the world’s leading producer of deduction puzzles on paper. It is based in Tokyo,
Japan. The popularity of these puzzles means that there is a need for something new to keep
them fresh. To maintain the enthusiasm and popularity of puzzles, we need to innovate.
There are so many of these puzzles that it is necessary to have a single system capable of
representing and modelling them all and making them playable. This system could then
try to solve them. A solving system could help to provide this novelty. To use these puzzles
in a solving system, the different puzzles need to be represented and modelled.

[13] shows a study on solving the Sudoku puzzle using Constraint Programming (CP)
approaches. This study shows results that are influenced by the selection of variables and
their values. [28] uses the same approach but with another puzzle: Kakuro. In this study,
different models were implemented and tested to optimise the search. Unfortunately, the
proposed models are too specific to this puzzle and are not general. Currently, no system
can model and solve all puzzles using constraint programming. And this is also the case
for other techniques, not only constraint programming.

The purpose of this thesis is to use a General Game system[26] (Ludii[24] in this case) to
model the mechanics of all deduction puzzles. Using Ludii would enable four things:

1. To have a common graphical interface for all the deduction puzzles.

2. Make it easy to design new puzzles, so that designers of all levels can test out their
new ideas.

3. To allow players to solve the puzzles.

4. Integrate and combine CSP solvers with Ludii to solve puzzles.
1http://www.waynegouldpuzzles.com/sudoku/

1

2 1 Introduction

Ludii uses a ludemic approach[31]. These are ludemes that define each element of the
puzzle. This approach allows that different ludemes can be reused in different ludemic
representations. This approach makes it easy to add new mechanics. In addition, Ludii
offers the possibility of converting game instances to XCSP[6] as mentioned in [20]. This
conversion is possible because Ludii uses ludemes. These ludemes will be created in such a
way as to be similar to the main global constraints, making them fairly easy to convert.
This thesis will deal with the modelling of the puzzle and its resolution by a human. A
second thesis is in progress: General Game Playing and Constraint Programming to Solve
any Logic Puzzles, which deals with puzzle solving using the XCSP concept and several
solvers. It is for this reason that this thesis seeks to preserve a description for the puzzles
that will allow them to be solved.

The first chapter of this thesis will present the different concepts and tools that have been
used. Next, a description of what the system already contains for deduction puzzles will
be presented. The third section will discuss all our contributions to the system in terms
of puzzles (new puzzles, new mechanics, etc.). A chapter on testing and experimentation
will highlight the effectiveness of our modelling and areas for optimisation. We will also
discuss some ideas for the future that this thesis raises.

2

3

2
Background

2.1 The puzzles

This thesis focuses on the modelling and representation of deduction puzzles. To introduce
this topic, it is therefore necessary to define precisely what a puzzle is. [15] define it in
their taxonomy of logic puzzles as "a problem with defined steps that aims to reach one or
more predefined solutions such that the challenge contains all the information necessary
to reach said solution". Unlike a game, the essence of a puzzle lies in the fact that it has
one or more solutions and that the player has all the information needed to solve it. There
is no random factor involved.

In this thesis, we will follow this taxonomy [15] (fig:2.1) to categorise the various puzzles.
In this taxonomy, puzzles are classified according to their objective and the process used to
reach the solution. It should be stressed, however, that we will be focusing here solely on
logic puzzles. There are also mechanical (dexterity) and procedural puzzles, but these are
not the subject of this work.

2

4 2 Background

Figure 2.1: Taxonomy of Lianne V. Hufkens and Cameron Browne

Within these logic puzzles, there are deduction puzzles and planning puzzles. The difference
between these two types of puzzles lies in the way they are solved. Planning puzzles require
a strategy to anticipate the moves needed to solve the puzzle. This category includes games
such as Tower of Hanoi1, where it is required to move discs of increasing diameter from
one tower to another without placing a disc of larger diameter on top of a smaller one. The
key to these puzzles is the order of the movements. That is why they need to be planned in
order to arrive at a solution.

The deduction puzzles, on the other hand, are solved on the basis of the various hints made
available to us. These are single-player puzzles with simple rules that can be solved by
deduction. Using information provided by the board, hints, etc., it is possible to reach a
solution. This category includes games such as Sudoku2, where you have to fill in a grid
with numbers based on those already in the grid.

In the taxonomy, these deduction puzzles are placed in the "abstract" category.

1https://en.wikipedia.org/wiki/Tower_of_Hanoi
2https://www.nikoli.co.jp/en/puzzles/sudoku/

2.2 Modelling and solving deduction puzzles

2

5

There are 3 types of puzzles in this category:

• Path puzzles: A path, connections or arrows are drawn to indicate how to solve the
puzzle (fig: 2.2)

(a)
Slitherlink

(b) Hashi-
wokakero

Figure 2.2: Path puzzles

• Position puzzles: To find the solution, you need to use symbols (numbers, letters,
etc.) or represent different shapes (fig: 2.3).

(a) Sudoku (b) Akari

Figure 2.3: Symbol puzzles

• Shading puzzles: In these puzzles, you have to colour in certain elements to find the
solution (fig: 2.4)

(a) Nono-
gram

(b) Hitori

Figure 2.4: Shading puzzles

2.2 Modelling and solving deduction puzzles
Various systems have attempted to model and solve certain puzzles. As shown in [17], a
particular solver has been implemented for single-agent stochastic puzzles. These games
are a far cry from deduction puzzles, since they use a notion of randomness. Another study
[7] focuses on deductive puzzles. In this one, deductive search will be used to try and solve
Sudoku and Slitherlink. Constraints will be used to train a model. These solving systems

2

6 2 Background

could work depending on the puzzle it is trying to solve. To be able to solve them, they
first need to be modelled in order to understand them, but also to be able to represent the
puzzle with constraints. So we need to find a system that can represent all the puzzles,
play with them and solve them using a solver.

2.3 Ludii & the ludemic approach
One way of modelling these puzzles is through the use of General Game Playing (GGP).
The aim of GGP is to develop agents capable of playing a wide variety of games [26].
In 2005, a General Game system (GGP-BASE) became a standard in research with the
Game Description Languages (GDL) [18]. As explained in [24], with this GDL, you have
to start from scratch every time. You have to rewrite everything in a language based on
first-order logic, which is "Time Consuming". This problem applies to all types of games,
including puzzles. Because of this, applications outside the field of AI are limited. Finally,
game descriptions are difficult to understand and do not always represent concepts in the
way that humans perceive them. Two solutions to this problem have emerged: Regular
Boardgames language[16] and Ludii [24]. The first solution will make it possible to model
certain complex games such as Amazons or Go. However, this system has its limitations
and does not allow all the most complex games to be modelled or made playable, given the
time it takes to use them. The second solution is Ludii.

Ludii, unlike other GGS, uses the Ludemic approach[24]. This approach is composed of
ludemes. As shown in [24], a ludeme can be seen as a conceptual unit of information
related to the game. It represents its equipment and its rules. The equipment is represented
using different geometric concepts. As shown in [9], the topology and geometry of the
system has also been generalised through the use of ludemes. The reasons for using this
approach are as follows:

• Simplicity: It is easy to create and modify descriptions for our games because they
use far fewer tokens. Representations using other approaches such as GDL require
many more characters to represent the same game. Tokens are the different words
used to represent a game.

• Clarity: One of the aims of the ludemic game description is to make it understandable
to someone unfamiliar with the game. This is done by choosing the names of the
ludemes. The ludemes have names that directly represent their behaviour and that
use terms close to what is commonly used in jargon.

• Generality: The general aspect of a ludeme allows it to be reused in multiple games.
The general aspect means that it adapts to different situations (depending on the
equipment it has, for example).

• Extensibility: It is easy to create new ludeme. The new ludemes are coded in new
classes. These classes are added directly to the system and the new elements are
therefore directly available in the grammar.

• Scalable: Ludemes are easily adaptable and avoid the need to recreate new elements
each time.

2.3 Ludii & the ludemic approach

2

7

• Effectiveness: As demonstrated in the publication [25], the ludemic approach, com-
pared with the Regular Boardgames language[16] and compared to GGP-BASE[26],
will offer the ability to make many more moves per second for the vast majority of
games. These observations are possible thanks to various optimisation processors
for calculating legal costs and simulating games (playouts) as described in [30].

To illustrate these different advantages, the first figure shows the description of Tic-Tac-
Toe3 using the GDL principle (fig: 2.6). The second shows the Tic-Tac-Toe using the ludemic
representation (fig: 2.5).

Ludeme
1 (game "Tic-Tac-Toe"
2 (players 2)
3 (equipment {
4 (board (square 3))
5 (piece "Disc" P1)
6 (piece "Cross" P2)
7 })
8 (rules
9 (play (move Add (to (sites Empty))))
10 (end (if (is Line 3)(result Mover Win)))
11)
12)

Figure 2.5: Tic-Tac-Toe with ludemic representation

3https://en.wikipedia.org/wiki/Tic-tac-toe

2

8 2 Background

Example 2.1: GDL of Tic-Tac-Toe

1 (r o l e whi te) (r o l e b l a c k)
2 (i n i t (c e l l 1 1 b)) (i n i t (c e l l 1 2 b)) (i n i t (c e l l 1 3 b))
3 (i n i t (c e l l 2 1 b)) (i n i t (c e l l 2 2 b)) (i n i t (c e l l 2 3 b))
4 (i n i t (c e l l 3 1 b)) (i n i t (c e l l 3 2 b)) (i n i t (c e l l 3 3 b))
5 (i n i t (c o n t r o l whi te))
6 (<= (l e g a l ?w (mark ?x ?y)) (true (c e l l ? x ?y b)) (true (c o n t r o l

?w)))
7 (<= (l e g a l whi te noop) (true (c o n t r o l b l a c k)))
8 (<= (l e g a l b l a c k noop) (true (c o n t r o l whi te)))
9 (<= (nex t (c e l l ?m ?n x)) (does whi te (mark ?m ?n)) (true (c e l l ?m

?n b)))
10 (<= (nex t (c e l l ?m ?n o)) (does b l a c k (mark ?m ?n)) (true (c e l l ?m

?n b)))
11 (<= (nex t (c e l l ?m ?n ?w)) (true (c e l l ?m ?n ?w)) (d i s t i n c t ?w b))
12 (<= (nex t (c e l l ?m ?n b)) (does ?w (mark ? j ?k))
13 (true (c e l l ?m ?n b)) (or (d i s t i n c t ?m ? j)
14 (d i s t i n c t ?n ?k)))
15 (<= (nex t (c o n t r o l whi te)) (true (c o n t r o l b l a c k)))
16 (<= (nex t (c o n t r o l b l a c k)) (true (c o n t r o l whi te)))
17 (<= (row ?m ?x) (true (c e l l ?m 1 ?x))
18 (true (c e l l ?m 2 ?x)) (true (c e l l ?m 3 ?x)))
19 (<= (column ?n ?x) (true (c e l l 1 ?n ?x))
20 (true (c e l l 2 ?n ?x)) (true (c e l l 3 ?n ?x)))
21 (<= (d i a g ona l ? x) (true (c e l l 1 1 ?x))
22 (true (c e l l 2 2 ?x)) (true (c e l l 3 3 ?x)))
23 (<= (d i a g ona l ? x) (true (c e l l 1 3 ?x))
24 (true (c e l l 2 2 ?x)) (true (c e l l 3 1 ?x)))
25 (<= (l i n e ?x) (row ?m ?x))
26 (<= (l i n e ?x) (column ?m ?x))
27 (<= (l i n e ?x) (d i a g ona l ? x))
28 (<= open (true (c e l l ?m ?n b))) (<= (goa l whi te 1 0 0) (l i n e x))
29 (<= (goa l whi te 5 0) (not open) (not (l i n e x)) (not (l i n e o)))
30 (<= (goa l whi te 0) open (not (l i n e x)))
31 (<= (goa l b l a c k 1 0 0) (l i n e o))
32 (<= (goa l b l a c k 5 0) (not open) (not (l i n e x)) (not (l i n e o)))
33 (<= (goa l b l a c k 0) open (not (l i n e o)))
34 (<= t e rm i n a l (l i n e x))
35 (<= t e rm i n a l (l i n e o))
36 (<= t e rm i n a l (not open))

Figure 2.6: Tic-Tac-Toe with GDL representation

2.3 Ludii & the ludemic approach

2

9

The GDL representation of Tic-Tac-Toe is three times bigger than the one in Ludii. As well
as being much longer, it is much less clear. It is understandable that the game is two-player
and that nine cells are initalised. What is done in nine initialisations is done in one line
with the ludemic approach. The authorised moves are difficult to understand with the
second approach (fig: 2.6), as are the victory conditions. In the first approach (fig: 2.5), it is
understandable that the player places a piece on an empty space and that the player wins
when a line of three is made.

2.3.1 Origins of Ludii
The origins of Ludii start in 2006, when in Brisbane, Australia, Cameron Browne [12]
designed Ludi. It is the previous project which led to the development of the General Game
System Ludii. It is the first system that used the ludemic approach. More than two hundred
ludemes were implemented in this version. This approach has led to the development
of a number of board games (e.g. Yavalath4). In fact, the system is the first to model a
new game using only computers. No human action was required. The Ludi approach was
not sufficiently general, and the language was not easily extensible. Indeed, due to an
implementation in C++, when a new game was added, it was generally necessary to update
the grammar and the code. With this method of representation, it was mainly necessary to
modify the compiler rather than add new mechanics.

As a result, a new type of grammar has been developed to overcome this problem. This is
how Class Grammar[8] was developed. As shown in [24], Ludii presented the use of this
approach, which maps a keyword in the representation to the associated Java code using
Java Reflection. The Class Grammar facilitated the modelling of the game by recovering
the different constructors in the code linked to the different keywords. All this to ensure a
one-to-one correspondence between the source code and the grammar. As described in
[8], this strategy leaves developers free to make their own implementation choices. In this
way, the user will only see the simplified version of the constructor in the grammar and
not its full implementation.

Launched in Maastricht in 2018, the Digital Ludeme Project5 aims to study the evolution
of traditional strategy games[11] to model them.

This project covered multiples game-related topics such as:

• Improve understanding of games using AI techniques.

• Trace the historical development of certain games.

• Explore the role of games in different cultures.

Games dating back thousands of years are often incomplete, and information about the
rules and equipment is often missing. Ludii was created with this in mind. This platform
uses AI techniques to reconstruct these different games. [14] and [23] are studies of older
games. They were used to identify missing rules and to determine, for example, the size of
4http://cambolbro.com/games/yavalath/
5http://ludeme.eu/

2

10 2 Background

the board by carrying out various tests with what they had available. This system has been
used to model and understand more than 1,000 games. All these games are represented
in a database. In addition to the study, Ludii offers the possibility of playing these games
and adding new ones. This was made public for the first time in July 20206 ,7. From now
on, all the work carried out in this field will be carried out by an international group of
researchers called GameTable, which has been made possible by COST8 [22].

Since then, Ludii has gone from strength to strength, with 1,299 games of various types
(board games, dominoes, etc.) now in its directory (fig2.7).

Figure 2.7: Type of game available in Ludii

In its latest public version 1.3.12, published on 01-08-2023, the Ludii system included 1,299
games. This platform has made it possible to represent games with unconventional boards.
Internally, the boards will be represented as graphs made up of vertices, edges and faces[9].
Thanks to this generation of graph, it is possible to generate games with a particular board
by specifying the coordinates of the vertices. In addition, this process offers the option of
playing on one of the three possible sites (edges, vertices, cells) (fig: 2.8).

Figure 2.8: The different SiteType

Once the board has been generated, two relationships are automatically calculated for each
site:

• Steps: steps to an adjacent element (if any). It is not necessary to specify a direction.

• Radials: Calculate how to get to an adjacent element with as few changes of direction
as possible. All this helps with line detection or visibility tests, for example. These

6https://ludii.games/
7https://github.com/Ludeme/Ludii
8https://www.cost.eu/actions/CA22145/

2.3 Ludii & the ludemic approach

2

11

calculations are carried out before the game is launched. This will save time during
the game, as these calculations will not need to be repeated. The drawback is that if
there are a lot of elements in the graph, these calculations can be relatively long.

2.3.2 The ludemic approach

All games within the General Game System Ludii are designed using the Ludemic Approach.
This method employs "ludemes" to systematically describe game components and functions
in a hierarchical tree structure. Elements such as the board, pieces, rules, and other game-
related details are articulated using this approach. It can be a piece of game equipment,
such as the board or part of the board, or even the rules.

From a technical point of view, game elements are implemented in Java classes. A class
corresponds to a game element. Each element in the game representation (string, integer,
etc.) can be seen as a Java class. Here is the game description of the Amazon game in the
Ludii Game Logic Guide[21] [29].

Ludeme
1 (game "Amazons"
2 (players 2)
3 (equipment {
4 (board (square 10))
5 (piece "Queen" Each (move Slide (then (moveAgain))))
6 (piece "Dot" Neutral)
7 })
8 (rules
9 (start {
10 (place "Queen1" {"A4" "D1" "G1" "J4"})
11 (place "Queen2" {"A7" "D10" "G10" "J7"})
12 })
13

14 (play
15 (if (is Even (count Moves))
16 (forEach Piece)
17 (move Shoot (piece "Dot0"))
18)
19)
20 (end (if (no Moves Next) (result Mover Win)))
21)
22)

This game is organised into different sections (players, equipment and rules). In these
sections, we will find a set of ludemes describing the section, these same words referring
to a Java class present in Ludii[10]. These classes define the ‘Ludeme’ interface (fig: 2.9),
which can be seen as the top of a hierarchy.

2

12 2 Background

Figure 2.9: The Ludeme diagram from the Ludii Game Logic Guide

It is important to note that different ludeme types are available. For example, there are:

• RegionFunctionLudemes: used to obtain a region

• IntArrayFunctionLudemes: retrieve an array of integers

• IntFunctionLudemes: return an integer

• BooleanFunctionLudemes: return a boolean to indicate whether something is True
or False.

In our case, we will mainly be using BooleanFunction ludemes to determine whether one
of our conditions in a puzzle is considered to be True or False. A problem is defined as
such in the code. The ludeme is defined using two main elements:

• A constructor: This is the element that will enable us to call up the ludeme. It is in
this constructor that we will decide which arguments the ludeme will take.

Java
1 public I sCount (
2 @Opt f ina l S i t eType type ,
3 @Opt f ina l Reg ionFunc t i on reg ion ,
4 @Opt f ina l I n t F un c t i o n what ,
5 f ina l I n t F un c t i o n r e s u l t
6)
7 {
8 th i s . r e g i on = r eg i on ;
9 whatFn = (what == null) ? new I n tCon s t an t (1) :

what ;
10 r e s u l t F n = r e s u l t ;
11 th i s . t ype = type ;
12 }

• An "eval" function: This is where we will find the logic behind the ludeme. In some
cases, this function will return an element according to its type.

2.3 Ludii & the ludemic approach

2

13

Java
1 public boolean e v a l (Contex t c on t e x t) {
2 i f (r e g i on == null)
3 return fa l s e ;
4

5 f ina l S i t eType r ea lType = (type == null) ?
c on t e x t . board () . d e f a u l t S i t e () : type ;

6

7 f ina l Con t a i n e r S t a t e ps =
c on t e x t . s t a t e () . c o n t a i n e r S t a t e s () [0] ;

8 f ina l int what = whatFn . e v a l (c on t e x t) ;
9 f ina l int r e s u l t = r e s u l t F n . e v a l (c on t e x t) ;
10 f ina l int [] s i t e s = r eg i on . e v a l (c on t e x t) . s i t e s () ;
11

12 boolean a s s i g n ed = true ;
13 in t cur r en tCount = 0 ;
14

15 for (f ina l int s i t e : s i t e s) {
16 i f (ps . i s R e s o l v e d (s i t e , r e a lType)) {
17 f ina l int wha tS i t e = ps . what (s i t e , r e a lType) ;
18 i f (wha t S i t e == what)
19 cur r en tCount ++ ;
20 }
21 e l se
22 a s s i g n ed = f a l s e ;
23 }
24

25 i f ((a s s i g n ed && cur ren tCoun t != r e s u l t) | |
(cu r r en tCount > r e s u l t))

26 return fa l s e ;
27

28 return true ;
29 }

The notion of hierarchy was introduced earlier. The ludemes can be seen as a tree where a
higher element (a ludeme) will call upon a lower element (another ludeme). The ludeme Is
is a good example. This ludeme is called a super-ludeme because it calls on other ludemes,
as shown in the figure below (fig: 2.10).

Is

regionResultgraph simple

IsUnique IsSum IsCount IsSolved

Figure 2.10: The super ludeme Is

2

14 2 Background

The super ludeme has the IsCount and IsSum rules, which are in the category of rules that
apply to RegionResult because we are performing an operation on a certain region. We
also have the IsSolved which belongs to the simple category. The difference between these
two categories is the arguments that the rules require. IsUnique in the graph category will
check elements on the graph.

2.3.3 Ludii Data Structure
In this subsection, we focus on the Ludii representation of puzzle[21]. The system imple-
mented a Java object "context" containing:

• A static object encapsulating all information compiled from the ludemic game de-
scription.

• A game state representation which models the current positions of the pieces/ele-
ments on the board. This object evolves after applying any move to the current state.
Commonly speaking, this representation is called a forward model.

• The trial which is the player’s sequence of play from the beginning.

In addition to the "context" object, the different state of games will be represented as state
object. Within this thesis, the representation of the start of the game will be called the
initial state and the representation of the solution to the puzzle will be called the final state.
These states are stored in state containers. Ludii has different types of state, depending on
the type of game.

The container will be represented as a graph with cells, vertices and edges. Thanks to this
container, it is possible to find locations made up of the container in question, the type
of site, the site index and its level. These levels are useful for stacking games (which we
will not use in this thesis). As with states, there are different types of container states
for storing game elements in a more optimised way so that information can be accessed
more easily. The container state is made up of a set of data vectors. These vectors are
represented in the form of Bitsets, called ChunkSets in the system. This representation is
used to compress the information for memory.

Deduction puzzles will be represented slightly differently. Indeed, the states of these
puzzles are represented similarly as Constraint Satisfied Problems [2] do. These states will
be composed of two elements:

• A set of variables, each of which has a predefined domain.

• A set of constraints linking each of these variables.

Here is the NQueens puzzle:

2.3 Ludii & the ludemic approach

2

15

Ludeme
1 (game "N Queens"
2 (players 1)
3 (equipment {
4 (board (square 8) (values Cell (range 0 1)))
5 (regions {AllDirections})
6 })
7

8 (rules
9 (play
10 (satisfy {
11 (is Count (sites Board) of:1 <Size>)
12 (all Different except:0)
13 })
14)
15 (end (if (is Solved) (result P1 Win)))
16)
17)

This puzzle is organised in a square board of size eight by eight and therefore a total of
sixty-four cells which can have the value one or zero. The domain of each variable (cells on
the board) will therefore be {0,1}. Each variable will be represented in the container state
(ContainerDeductionPuzzleState). The BitSet associated with the variable will indicate the
available values in the domain of this variable.

Some methods are associated with this type of container state to modify BitSets. These
include :

• bit(var, value): indicates whether a value is available in the domain of a variable.

• set(var, value): Sets the domain with the associated value.

• toggle(var, value): changes the value bit in the variable

• reset(var): resets all bits in the Bitset to True so that all values are available

• isResolved(var): returns true if the variable’s domain is fixed

• what(var): returns the value set in the variable’s domain.

2.3.4 Ludii & Deduction Puzzle
In the current version of Ludii, nineteen deduction puzzles are available, including Sudoku
and some of its variants. These include Sudoku, Anti-Knight Sudoku, Tridoku, Killer
Sudoku, Squaro, Slitherlink, Kakuro, Magic Square, Magic Hexagon, ...

What all these puzzles have in common is that they involve filling in a grid. Using the
different elements, we can create a set of versions of the puzzle. For example, it is possible
to create a multitude of Sudoku with just the basic grid. If we take chess for comparison,
the starting positions of the different pieces will always be the same.

3

17

3
Deduction puzzle in ludii

As mentioned above, some deduction puzzles are already parts of the Ludii Library. In this
section, we will present the puzzles that have already been implemented, as well as the
various rules and ludemes that will be useful to us.

3.1 The puzzles
3.1.1 Sudoku and his variants

In this subsection, we focus on Sudoku1, the most popular puzzle type worldwide. Sudoku
(fig: 3.1) consists of a board with eighty-one cells divided into a nine by nine square. You
have to fill in the different cells according to three rules:

1. The same number cannot appear twice in each row.

2. In each column, we cannot have the same number twice.

3. On each sub-grid of nine squares, we cannot have the same number two times.

Figure 3.1: An Empty Sudoku and its solution

Sudoku exists in several different variants (fig: 3.2). There is Sudoku X, for example, which
adds two new regions to solve - the two diagonals of the board. Ludii also has the Killer
1https://www.nikoli.co.jp/en/puzzles/sudoku/

3

18 3 Deduction puzzle in ludii

Sudoku, which is a Sudoku with lots of mini regions in addition to the classic ones. These
new regions are composed of a hint, and the sum of the contents of these regions must be
equal to this hint. Here is the list of sudoku and their variants already available:

• Sudoku

• Anti-Knight Sudoku

• Killer Sudoku

• Samurai Sudoku

• Sudoku Mine

• Sudoku X

• Tridoku

• Hoshi

• Sujiken

(a) Antiknight
Sudoku

(b) Killer Sudoku (c) Samourai
Sudoku

(d) Sudoku Mine

(e) Sudoku X (f) Tridoku (g) Hoshi (h) Sujiken

Figure 3.2: Sudoku variants

3.1 The puzzles

3

19

3.1.2 Kakuro

Kakuro2 (fig: 3.3) is another very popular game. It consists of a rectangle with X rows and
Y columns. In this board, the puzzle has several regions, each with an associated hint that
will be located either to the North or to the West of the region. In this region, we have to
place numbers in order to add up the sum that corresponds to the hint. You can not have
the same number twice in the same region. Compared to Sudoku, there are several sizes.

Figure 3.3: An Empty Kakuro and its solution

3.1.3 Magic Sqare & Magic Hexagon

The next puzzle is the Magic Square3 (fig: 3.4). This puzzle is a square into which we have
to place numbers. In this square, all the numbers must be different. To solve the puzzle,
the sum of each row, each column and the two diagonals must be the same. This value is
predefined according to the size of the square.
Magic Hexagon (fig: 3.5) is a variant of Magic Square. This time, the board is no longer a
square but a hexagon. This time, the sum must be made on the rows and diagonals.

Figure 3.4: MagicSquare in Ludii Figure 3.5: Magic Hexagon in Ludii

3.1.4 NQueens

In this puzzle4 (fig: 3.6), it is not numbers but queens that need to be placed on an n by n
board. The n queens must be placed on the board in such a way that no other is on the
same row, column or diagonal. It is an interesting puzzle because, as this implementation

2https://www.nikoli.co.jp/en/puzzles/kakuro/
3https://en.wikipedia.org/wiki/Magic_square
4https://en.wikipedia.org/wiki/Eight_queens_puzzle

3

20 3 Deduction puzzle in ludii

idea5 shows, it is a problem that has already been studied and was therefore important to
model.

Figure 3.6: An Empty N Queens and its solution

The ludemic game description of the puzzle is described as follows:

Ludeme
1 (game "N Queens"
2 (players 1)
3 (equipment {
4 (board (square 8) (values Cell (range 0 1)))
5 (regions {AllDirections})
6 })
7

8 (rules
9 (play
10 (satisfy {
11 (is Count (sites Board) of:1 <Size>)
12 (all Different except:0)
13 })
14)
15 (end (if (is Solved) (result P1 Win)))
16)
17)

3.1.5 Fill A Pix

Fill A Pix6 (fig: 3.7) consists of a square board made up of several hints. Each hint represents
a sub-board of nine squares where the hint is the centre of that region. It indicates how
many squares need to be coloured in the region. Once the puzzle has been solved, an image
appears showing a drawing.

5https://medium.com/@carlosgonzalez_39141/using-ai-to-solve-the-n-queens-problem-2a5a9cc5c84c
6https://www.cross-plus-a.com/puzzles.htm#FillAPix

3.1 The puzzles

3

21

Figure 3.7: An Empty Fill A Pix and its solution

3.1.6 Futoshiki

This game7 (fig: 3.8) is made up of a square board. The player needs to place numbers to
complete the grid. Each row and column must contain different numbers. Symbols smaller
than and greater than are also present to indicate the conditions to the player.

Figure 3.8: An Empty Futoshiki and its solution

3.1.7 Slitherlink

Unlike other puzzles, this one8 (fig: 3.9) won’t be played on cells, but on edges. The aim is
to complete a loop. This loop can not cross, and there are hints on some of the cells. This
number indicates the number of edges that must be part of the loop for this cell.

Figure 3.9: An Empty Slitherlink and its solution

7https://fr.wikipedia.org/wiki/Futoshiki
8https://www.nikoli.co.jp/en/puzzles/slitherlink/

3

22 3 Deduction puzzle in ludii

3.1.8 Latin Sqare

The aim of Latin Square9 (fig: 3.10) is to complete the square grid of size n by n with
numbers from one to n. As with many of the games already presented, the aim is to have
different numbers in each row and column.

Figure 3.10: An Empty Latin Square and its solution

3.1.9 Sqaro

Squaro10 (fig: 3.11) is a deduction puzzle in which we will be playing with vertices. The
aim of the game is to place black pieces on the vertices of a square board. The cells on the
board contain hints that will show how many pieces are waiting on the vertices of the cell.

Figure 3.11: An Empty Squaro and its solution

3.1.10 Takuzu

Takuzu11 (fig: 3.12) is a binary game, where the player has to place ones or zeros on the
square board. The rule is that the participant can not have more than two consecutive
numbers. Numbers are already placed to guide us towards the final solution.

9https://en.wikipedia.org/wiki/Latin_square
10https://www.nordinho.net/vbull/puzzles/35331-squaro.html
11https://en.wikipedia.org/wiki/Takuzu

3.2 Graphical representations

3

23

Figure 3.12: An Empty Takuzu and its solution

3.2 Graphical representations
Graphics are represented in Ludii using a library : Graphics2D12.
Each puzzle does not have its own graphic style. There is a general graphic style for all
games (unless we select one). In Ludii, we can select metadata to customise the graphics of
our puzzles. These metadatas offer a range of possibilities, such as renaming a piece to put
a symbol in place of a number for example, or giving a certain colour to a piece. (fig: 3.13
& 3.14)

Figure 3.13: Squaro without metadata
graphics Figure 3.14: Squaro with metadata graphics

There are also a number of specific graphic styles used to make games more attractive.
Take Slitherlink, for example (fig: 3.15 & 3.16), which uses the "PenAndPaper" style. The
player plays on the edges, so making the cells and edges disappear is a real way of making
the game more readable for the player. Sudoku also has a particular graphic style because
the sub-grids are drawn automatically. This style can be reused for all puzzles that are
variants of Sudoku and have a conventional board (nine by nine square).

Figure 3.15: Slitherlink without Design Figure 3.16: Slitherlink with Design

12https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

3

24 3 Deduction puzzle in ludii

3.3 Ludemes and puzzle mechanisms
In this section, we will analyse the rules specific to the deduction puzzle already present
in the public version of Ludii. In the previous chapter, we mentioned how the game is
modelled using different elements. Here, we are going to focus more on the rules for
solving a puzzle.

There are 3 types of rules:

• Start: These are the rules that will be applied when the game is created. Generally
speaking, they involve applying certain values in certain regions in order to give
the player the start of a resolution. This rule will modify our initial state with the
elements it contains

• Play: These are the rules that will be applied while the game is running. Together,
they will indicate whether the move the player wishes to make is a forbidden move,
making one of the rules false. This will therefore indicate the legal moves for the
current state.

• End: These are the rules that will be applied after each move to determine whether
the puzzle is finished and solved or not. These rules will check whether all the
conditions have been met, so that the puzzle can be declared solved.

3.3.1 IsSolved
This rule will be used for all puzzles as an end rule. This rule will assign each unassigned
site the lowest value in its domain. This is why, when creating a ludeme or puzzle, we will
never consider the value zero to be a movement on the part of the player. It will then check
all the conditions (contraints) in the play section. If all these conditions return true, then
the game is solved. If not, the game continues. This rule takes no arguments.

3.3.2 Satisfy
This rule will be used for all deduction puzzles. It will test each condition (constraint). It
will determine all the legal moves by combining all these conditions. It is this rule that will
prevent the player from making a move that goes against the rules of the puzzle.

3.3.3 IsCount
IsCount will count the number of elements present and check whether the number counted
is the expected number. This can be done for a region or for the whole board. You need to
specify the expected number. The possible parameters for this rule are :

• Specify which siteType we are working on (not required)

• Specify a region for which we want to check the number of elements present (not
mandatory)

• Specify the value of the elements we are counting. If this is not specified, we will
count all the elements that have the value one.

3.3 Ludemes and puzzle mechanisms

3

25

• As previously mentioned, you need to give the expected number of elements

If we have more elements than expected (in the event that all the values are not assigned)
or if the observed value is not the right one, then we return False.

3.3.4 IsSum
IsSum will add up the different elements of a region. As with IsCount, certain parameters
are possible:

• Specify the region we want to add (not required)

• Specify which siteType we are working on (not compulsory)

• You must specify the value of the expected sum.

If the result is greater than expected (without the case where all the elements are not
allocated) or if the observed value is not the right one, then the rule will return False.

3.3.5 AllDifferent
AllDifferent will determine, as its name suggests, to have different values for a predefined
region. Here are the main parameters, which are not mandatory:

• Specify the region we want to make unique

• Specify which siteType we are working on

The rule will return False if we want to add a value that already exists in the region. If no
region is given as a parameter, the rule will check whether any regions exist. If so, it will
execute on the various regions. If no regions exist, it will run on the whole board.

4

27

4
New Rules and New
Deduction Puzzle

This section will present the contributions made in this thesis. We will cover the ludemes
we have modified, as well as all the new ludemes and puzzles we have created. New graphic
styles have also been added to personalise each puzzle and model them in accordance with
their original format. As a reminder, we have made these new additions and changes to
represent all the deduction puzzles in Ludii.

4.1 Ludemes updated
These different games have been modified to provide new functions.:

4.1.1 IsSum
This rule still has the same function: counting and adding the value of elements in a region.
This ludeme can now be applied to specific regions. These will be identified by name. In
the code, the constructor already took a string argument allowing this, but the features
were not coded in the ludeme’s "eval" method. This change has enabled us, for example in
Akari, to force a certain sum of zeros on certain cells (so that these cells are unplayable for
the player).

4.1.2 IsCount
As with IsSum, IsCount has retained its original function: counting the number of elements,
with the option of specifying the element to be counted. The change is in the structure
of the code. The changes to this ludeme have made it possible to add the possibility of
applying this condition to a specific region. This is done using the name of the region. In
addition to the previous arguments, the constructor will now take a string argument to
specify the name of the region.

4

28 4 New Rules and New Deduction Puzzle

This is the old constructor:

Java
1 public I sCount (
2 @Opt f ina l S i t eType type ,
3 @Opt f ina l Reg ionFunc t i on reg ion ,
4 @Opt f ina l I n t F un c t i o n what ,
5 f ina l I n t F un c t i o n r e s u l t
6) {
7 th i s . r e g i on = r eg i on ;
8 whatFn = (what == null) ? new I n tCon s t an t (1) : what ;
9 r e s u l t F n = r e s u l t ;
10 th i s . t ype = type ;
11 }

This is the new constructor:

Java
1 public I sCount (
2 @Opt f ina l S i t eType type ,
3 @Opt f ina l Reg ionFunc t i on reg ion ,
4 @Opt f ina l I n t F un c t i o n what ,
5 @Opt f ina l S t r i n g nameRegion ,
6 f ina l I n t F un c t i o n r e s u l t
7) {
8 th i s . r e g i on = r eg i on ;
9 whatFn = (what == null) ? new I n tCon s t an t (1) : what ;
10

11 i f (r e g i on != null)
12 r e g i o nCon s t r a i n t = r eg i on ;
13 e l se
14 a r e aCon s t r a i n t = Reg i onTypeS t a t i c . Reg ions ;
15

16 r e s u l t F n = r e s u l t ;
17 th i s . t ype = type ;
18

19 name = (nameRegion == null) ? " " : nameRegion ;
20 }

4.2 New Ludemes

4

29

4.1.3 SuperLudeme Is
This super ludeme has been modified to include all the new rules we have added. All the
rule calls are in this super ludeme. Here is the new graph associated with the super ludeme
Is (fig: 4.1):

Is

regionResultgraph simple

IsUnique IsValidDirections

IsSum isMatch IsDistinct IsCountEmpty IsCount IsConnex

IsSolved IsCrossed IsTilesComplete

Figure 4.1: The super ludeme Is

4.2 New Ludemes
All these new ludeme have been created with one aim in mind: to be as general as possible.
Many of these new ludemes have evolved over the year of development so that they can be
used in as many games as possible. It is important to note that all the rules will return a
boolean to indicate whether or not a movement is considered prohibited. We will therefore
return the boolean True when a movement is authorised, otherwise it will be the boolean
False. All the rules must have been thought through with the IsSolved final condition
presented in the previous chapter. As a reminder, this ludeme will assign the smallest value
in its domain to all unassigned variables. All the rules have therefore had to be thought
out in such a way that the game does not end if it is not finished, but also that it returns
False if the move made is completely false and makes a rule impossible.

These new ludemes have also been designed to have names that are as clear as possible.
As the ludemes are designed using Class Grammar[8], each ludeme is associated with a
keyword. These keywords are carefully chosen for two reasons:

1. The ludemic description of the puzzle must be as clear as possible. The aim is for
any reader of the description to be able to understand the puzzle (equipment and
rules) even if they have no knowledge of it.

2. Ludii is a system used by many people. Among them are game designers. We there-
fore need a language that is clear to everyone (including people with no computer
knowledge).

Sudoku is an interesting example. It is easy to understand that the board is a square, with
rows, columns and sub-grids. You have to place numbers from one to nine. Some numbers
are already placed on the board and each number must be different in the same region.

4

30 4 New Rules and New Deduction Puzzle

Ludeme
1 (game "Sudoku"
2 (players 1)
3 (equipment {
4 (board (square 9) (values Cell (range 1 9)))
5 (regions {Columns Rows SubGrids})
6 })
7 (rules
8 (start (set { {1 9} {6 4} {11 8} {12 5} {16 1} {20 1}

{25 6} {26 8} {30 1} {34 3} {40 4}
9 {41 5} {42 7} {46 5} {50 7} {55 7} {58 9} {60 2} {65

3} {66 6} {72 8} }))
10 (play (satisfy (all Different)))
11 (end (if (is Solved) (result P1 Win)))
12)
13)

4.2.1 IsTilesComplete
The purpose of this new rule is to check whether a region is completely empty or completely
full. This rule will run at the same time as IsSolved and has been created for the Tilepaint
puzzle1. In this puzzle, there are tiles on the board that must be filled or not according to
hints. The tiles must be either empty or full, as this game suggests. This ludeme will iterate
over each region with the name "Tiles" and check each site in the region. The condition
will store in a counter the number of sites that have the value one. If at the end, the counter
has a value other than zero or a value other than the size of the region, then the tile is not
complete, and therefore the answer is wrong.

4.2.2 IsCountEmpty
IsCountEmpty is very similar to IsCount in the way it is implemented. The aim of this
ludeme is to determine the number of unresolved squares in a region. This condition was
created for the Kurodoko puzzle2. In this puzzle, each hint must have the correct number
of unblackened squares in an orthogonal direction. This puzzle will therefore have as its
argument an orthogonal region and the index of the cell containing the hint (which is the
center of the region). We will therefore iterate over the region and classify the sites present
in the region to find out whether they are to the north, west, east or south of this center.
Once this has been done, we will iterate on the four directions, starting from the center.
The ludeme will count the number of unresolved cells. Once a resolved site is encountered
(a value other than zero), we will stop iterating this part of the region and move on to the
next region. At the end, the number counted will be compared to the desired number. The
condition will return True if the number is greater than or equal to the desired number.
Given that we are placing blocks to reduce the size of the region, if we have a larger counter,
it means that we have a solution under construction. This is due to ludeme Satisfy. At
1https://www.nikoli.co.jp/en/puzzles/tilepaint/
2https://www.nikoli.co.jp/en/puzzles/kurodoko/

4.2 New Ludemes

4

31

present, this ludeme is adapted for square boards. It could be generalised by adapting to
the shape of the board.

4.2.3 IsValidDirection
IsValidDirection is used in games where we try to make a path. It forces the player to make
either a straight line or a turn, depending on the hint encountered. In this new rule, you
need to find all the hints present on the vertices and the associated vertices. The condition
will iterate over each edge and keep the edges linked to the vertex. The ludeme will then
analyse the value of the hint: if we get a zero we want a straight line, if we get a one we
want an angle. This rule will block some edges depending on where the first one was
played.

4.2.4 IsMatch

IsMatch has been designed for the Nonogram and its variants3. This ludeme will determine
which cells on the board can be coloured according to the associated hints. This condition
works with regions. For each region, we will then determine which squares are resolved
and which are not. If they aren’t, we will store the index for that site. We then call up our
first auxiliary function.

This function will generate all the possible cases by carrying out an exhaustive exploration
of the various possible combinations for the region we are working on. In the case of a
classic nonogram, the ludeme will fill in our region with either zeros to avoid selecting
these boxes or ones to confirm their selection. If we use the coloured version, regions will
be completed with zeros as well as other integers. Each integer corresponds to a colour. As
shown in the previous chapter, logic and graphics are separate. So we reason with numbers,
not colours. The ludeme are going to have to generate all the cases combinatorially. To do
this, we are going to use the function recursively. As long as we have not reached the size
of the region, we will first add a zero and then a one. Once we have reached the desired
size, this pseudo solution will be stored in a list that we will use immediately afterwards.
Finally, once all the cases have been generated, we will retrieve the list containing them all.

We will then check each pseudo-region generated. We will call a second auxiliary function
to handle this. In this function, we will start by generating our pattern for our regular
expression. The regular expressions4 are data structures that use characters to define a
certain sequence. This sequence will be created according to our hints. Here is the structure
that our regular expression will have: "0*1{X}0+1{Y}0*". This regular expression is based
on the structure of our hints. We are going to want to have the right number of resolved
cells, which are our hints. If there is several hints (and therefore several groups of resolved
boxes), an unresolved box must separate these two groups. If there is one hint for a region,
the regular expression will have the following structure: "0*1{X}0*". 1{X} represents the
number of ones expected to follow. X being the expected number. 0+ means that we want
at least one zero but that we can have more. Finally, 0* indicates that we can have a certain
number of zeros without specifying a minimum (so having no zeros is possible). Once this
3https://en.wikipedia.org/wiki/Nonogram
4https://en.wikipedia.org/wiki/Regular_expression

4

32 4 New Rules and New Deduction Puzzle

pattern has been created, we will compare each region in our list with this pattern. If a
region matches our regular expression, we will return true and stop analysing the other
regions generated. If it doesn’t, we will continue checking the other regions. If no region
matches, this means that no solution is possible, so we will return the boolean False to
indicate an impossible move.

4.2.5 IsCrossed

This ludeme uses the edges. In this rule, IsCrossed will check whether or not two edges
overlap. In this rule, we are going to retrieve all the edges and check each edge against the
others. The condition are going to retrieve the vertices that determine the start and end of
the edges. Then it will check the positions of the vertices to determine whether or not the
edges overlap.

This ludeme was created for the Hashiwokakero5 and is used with the logical word not.
This logical word reverses the associated rule. This ludeme will indicate whether edges
overlap. In the puzzle, links must not be able to overlap.

4.2.6 IsDistinct

IsDistinct will be used with a region and an integer. The aim of this ludeme is to make this
integer unique in this region. To do this, we are going to retrieve all the sites in the region.
We iterate over these sites to check whether the site is resolved or has a value other than
zero. If it is, we then check the value associated with this site to see if it is different from
our integer and continue analysing the region. If it is the same value, we return False.

4.2.7 IsConnex

IsConnex will compute the number of components in a graph. This rule was inspired and
adapted by the algorithm "Depth-first search to find connected components in a graph" in
the book "Algorithms Fourth Edition"[27].

For this rule, we will have a BitSet6 the size of the number of sites to be analysed and a
linked list of integers. We will iterate over each cell. If the cell is not resolved and is not
marked in the BitSet, or if the cell has a value other than the imposed value and is not
marked, then we can consider it as marked and add this cell to our linked list. As long as
this linked list is not empty, we will retrieve this node from the list and we will retrieve all
its neighbours. If this neighbour meets the same conditions as above, then we consider it
to be marked and add it to our linked list.

This gives us the number of components. If the number exceeds the authorised number,
we return the boolean False.

5https://www.nikoli.co.jp/en/puzzles/Hashiwokakero/
6https://docs.oracle.com/javase%2F7%2Fdocs%2Fapi%2F%2F/java/util/BitSet.html

4.3 The new puzzles

4

33

4.2.8 Super Ludeme At
The super ludeme At has the same function as Is. This super ludeme refers to other ludemes
that will be described here. As with Is, we have created types to structure the ludeme. We
have only created the regionResult type, which checks the number of elements in a region
(fig: 4.2).

At

regionResult

AtLeast AtMost

Figure 4.2: The super ludeme At

4.2.9 AtMost & AtLeast
AtMost is the first ludeme created with the At super ludeme. It was created in the same way
as the IsSum ludeme. We will count the elements and add them together. The difference
lies in the final condition. We no longer return False if we don’t reach the desired value,
but only if we exceed the desired value.

This rule has an individual attribute in its arguments. When we have this activated, we
ensure that the values proposed to complete a region do not exceed the integer given as an
argument.

AtLeast will work in exactly the same way, but in reverse. We want a minimum number of
elements rather than a maximum. AtLeast does not have the individual attribute.

4.2.10 AllHintDifferent
AllHintDifferent is similar to AllDifferent. Like AllDifferent, the aim is to have different
hints within a region. We will retrieve the hints from the region and iterate from site to
site. If the site is unresolved, we will retrieve the hint present on it and store it in a list if
the hint is not already there. If not, this would mean that we have the same hint twice, so
we return the boolean False. If we only have different hints at the end of the iteration, then
the rule has been respected and we will return True. This rule will be executed as an end
rule with IsSolved.

4.3 The new puzzles
These new puzzle include many variants of existing games, as well as new games that
have required the addition of the conditions mentioned above, as well as graphic changes.
These will be discussed in the next section of this chapter. Each puzzle has been created
using the same ludemic representation as the previous games. Different challenges have
also been added for each game. So there are different instances of the game with, for

4

34 4 New Rules and New Deduction Puzzle

example, different board sizes, different hints, etc. All the puzzles added have been found
in the register of games created by Nikoli7, or in the Cross+A8 software catalogue. These
new puzzles have been developed with two aims in mind: to complete the Ludii system’s
catalogue of deduction puzzles, while covering as many puzzle types as possible according
to the taxonomy[15].

4.3.1 The Sudoku Variants

This sub-section will discuss of the ten new Sudoku variants available. So many variants
have been made possible thanks to the ludemic approach. The general aspect of these
rules means that many puzzles can be created without having to add new elements. Take
Sudoku, for example. We have created almost a dozen variants of this puzzle based on its
basic model. We have been able to reuse the same graphic style for a "classic" board, but
also the same rules for all these variants. Of course, some modifications are necessary to
make these variants unique and lie in the graphic representation of the puzzle itself and
not in the rules. Another approach would have made development less practical, as we
would probably have had to start from scratch, as quoted in [24]. It also gave us a better
insight into the Ludii system. All these puzzles were found in the Cross+A9 catalogue.

Center Dot Sudoku

The Center Dot Sudoku10 (fig: 4.3) is the first Sudoku variant created in this project. We
were able to reuse the ludemic representation of classic Sudoku. The rules remain the
same, except that this Sudoku have a new region which is the center of each sub-grid. You
have to fill in the grid with numbers so that all the regions (columns, rows, sub-grids and
the center of each sub-grid) are filled in. To make the game more visual, we have added a
colour to the sites in the new region. As with Sudoku, some of the numbers are already
positioned.

To represent the puzzle, the classic nine-by-nine board is used. The user can place numbers
from one to nine. The rows, columns and sub-grids regions were generated automatically
using the keywords "Columns Rows SubGrids". These keywords will generate regions.
Rows will generate one region per row, Columns will do the same per column. SubGrids
will generate one region per sub-grid of size nine by nine, as in a classic Sudoku. The
region with the centers of the sub-grids was added manually using the cell indexes. The
sub-grids were designed in the same way as for classic Sudoku, using the Sudoku style that
had already been created.
For the condition, only the AllDifferent ludeme is applied. As mentioned above, it is applied
to each region of the game to prevent players from placing the same number twice.

7https://www.nikoli.co.jp/en/puzzles/
8https://www.cross-plus-a.com/fr/index.htm
9https://www.cross-plus-a.com/fr/index.htm
10https://www.cross-plus-a.com/fr/sudoku.htm#CenterDot

4.3 The new puzzles

4

35

Figure 4.3: An Empty Center Dot Sudoku and its solution

Windoku

Windoku11 (fig: 4.4) is also a variant of Sudoku. Windoku still have the same board
structure, but this time the puzzle have not one but four new regions. These are four
sub-grids separated by a row or column to represent a window. As with center dot Sudoku,
the new regions have been coloured to make them clearer.

As with classic Sudoku, AllDifferent is the rule applied to this game.

Figure 4.4: An Empty Windoku and its solution

JigSaw

Jigsaw12 (fig: 4.5) follows the same storyline as the previous games. The aim is to complete
regions with numbers from one to nine. This puzzle also have the concept of rows and
columns, which is defined for the regions, but we no longer have the sub-grids. The
sub-grids are replaced by specially shaped regions. Numbers are also already placed to
guide the player towards the solution.

From a gameplay point of view, the rows and columns are defined using the logical words
Rows and Columns. For the nine other regions that replace the sub-grids, we have to define
them by hand within the game descriptions.

For the ludemes used, we only have the AllDifferent called. From a graphical point of view,
the regions are defined as HintRegions because they are regions that are drawn for the
user. Before, only the contours of hint regions were drawn (if we called them).

11https://www.cross-plus-a.com/fr/sudoku.htm#Windoku
12https://www.cross-plus-a.com/fr/sudoku.htm#JigsawSudoku

4

36 4 New Rules and New Deduction Puzzle

Figure 4.5: An Empty Jigsaw and its solution

Asterisk Sudoku

As the name suggests, this is also a variant of Sudoku. Asterisk Sudoku13 (fig: 4.6) have a
classic board with regions that are the classic rows, columns and sub-grids. In addition to
these regions, the puzzle have a new one. This corresponds to the center of the board and
eight other cells surrounding it.

For the representation of this game, this Sudoku have a classic representation as before
with the keywords Rows, Columns and SubGrid. The new region had to be defined by
hand using the indexes of these new cells. These cells have been coloured to make the
game clearer for the user.

As for the rules, there is not much difference from the others, as we are still using the same
rule just different regions.

Figure 4.6: An Empty Asterisk Sudoku and its solution

Girandola

Although it doesn’t have Sudoku in its name, Girandola14 (fig: 4.7) is a variant of Sudoku
too. The board is still a nine by nine square with rows, columns and sub-grids as regions.
The challenge lies in the new region that has been created. These are located in the four
corners of the board and in the center of the other sub-grids.

The representation remains the same as the other Sudoku puzzles, but the new region has
been defined manually. It has been coloured so that the player can see the new region.

As before, only one rule has been used: the AllDifferent.

13https://www.cross-plus-a.com/fr/sudoku.htm#Asterisk
14https://www.cross-plus-a.com/fr/sudoku.htm#Girandola

4.3 The new puzzles

4

37

Figure 4.7: An Empty Girandola and its solution

Sudoku DG

Sudoku DG15 (fig: 4.8) is the colourful version of Sudoku. In this version, we have a nine by
nine square board made up of classic sub-grids. On top of that, we have nine new regions.
In each sub-grid we will take the first cell to make a first region, then the second cell of
each sub-grid to make the second, and so on. Each region will have a different colour to
visualise each new region.

When it comes to representing the game, everything remains as classic as in previous
puzzles. We need to define the nine regions by typing in the cell indexes to create them.
As mentioned, each region will have its own colour to differentiate them.

For the rules, only the AllDifferent is used, so that the same number cannot be used in the
same region.

Figure 4.8: An Empty Sudoku DG and its solution

Flower Sudoku

This and the following variants have specially shaped board. In this first variant16 (fig: 4.9),
the game board consists of a central Sudoku with a new row of three sub-grids at each
cardinal point. The aim is to make the board look like a flower. In this Sudoku, there is not
one but five Sudoku to solve. There is one in the east, one in the west, one in the north,
one in the south and one in the center. The difficulty lies in the fact that some Sudoku have
sub-grids in common.

To represent this game, we have merged the boards. The first board is the central board,
measuring nine by nine. We then generated four other boards that we positioned at specific
coordinates to represent our flower. Compared with the previous Sudoku game, we can
no longer use keywords because we have an unusual board. We had to define each region
manually. Each row of nine elements, each column of nine elements and each sub-grid was
15https://www.cross-plus-a.com/fr/sudoku.htm#SudokuDG
16https://www.cross-plus-a.com/fr/sudoku.htm#FlowerSudoku

4

38 4 New Rules and New Deduction Puzzle

manually encoded to make the puzzle work. As the board is special, each edge to represent
the Sudoku was also added manually using graphical metadata.

The rules remain classic. Despite the special shape of the board, the only rule used is
AllDifferent.

Figure 4.9: An Empty Flower Sudoku and its solution

Kazaguruma

Kazaguruma17 (fig: 4.10) is a Sudoku variant that also has its own special board. In this
puzzle, the board is made up of five combined Sudoku to present a propeller of mill. The
aim of the puzzle is to solve these five Sudoku simultaneously, i.e. taking account of each
other as some of the sub-grids are shared.

The puzzle has been created in the same way as Flower Sudoku, i.e. with a central board
and then four other boards arranged so that our shape appears. The central board has been
coloured to make it stand out. Like our previous variant, we had to encode all the regions
manually to make the puzzle work. The edges also had to be manually added.
For the rules, only the AllDifferent is called.

Figure 4.10: An Empty Kazaguruma and its solution

Sohei Sudoku

Sohei Sudoku18 (fig: 4.11) may seem simpler than its predecessors, as there are only
four Sudoku to solve. For this Sudoku, only four sub-grids are shared, which limits the
possibilities and makes it easier to make mistakes.

17https://www.cross-plus-a.com/fr/sudoku.htm#Kazaguruma
18https://www.cross-plus-a.com/fr/sudoku.htm#SoheiSudoku

4.3 The new puzzles

4

39

To represent this puzzle, four boards have been created and merged to create the board.
The large central cell was removed by creating a polygon using the indexes of this cell. As
for the regions, they had to be added by hand so that each region corresponded correctly.

For the rules, as with the other Sudoku so far, only AllDifferent was used.

Figure 4.11: An Empty Sohei Sudoku and its solution

Butterfly Sudoku

Butterfly Sudoku19 (fig: 4.12) is not a nine by nine Sudoku, but a twelve by twelve Sudoku.
There are not one but four Sudoku to solve on this board. The first is in the North-West
corner, the second in the North-East corner, the third in the South-East corner and the last
in the South-West corner.

Representing this puzzle was simpler than the previous ones, as we were able to create a
twelve by twelve square and automatically draw the sub-grids in Sudoku style. Only the
regions had to be encoded manually. We can’t use the classic keywords because that would
create regions for each row and each column of twelve elements rather than nine. Some of
the sub-grids have been coloured to make it easier to solve the puzzle. The green sub-grids
are common to all four Sudoku and the orange sub-grids are common to two Sudoku.

AllDifferent is the only rule needed to solve this puzzle.

Figure 4.12: An Empty Butterfly Sudoku and its solution

4.3.2 Other puzzles
From this sub-section onwards, we will be discussing the new puzzles that have been added.
These have been selected from the catalogues with a view to modelling them in the Ludii
system. These puzzles have been chosen to offer new mechanics but also to try and cover
as much of the taxonomy[15] as possible.
19https://www.cross-plus-a.com/fr/sudoku.htm#ButterflySudoku

4

40 4 New Rules and New Deduction Puzzle

4.3.3 Akari

Akari20 (fig: 4.13) is a puzzle created by the Japanese firm Nikoli in 2001. In this game, we
have a square board of a certain size. On this board, there are some blackened squares,
some with numbers and some without. The aim is to light up all the squares that are not
black. To do this, we are going to place light bulbs according to certain rules. Around the
blackened squares with a number on them, we must have the exact number of bulbs. Only
one light bulb can be placed in a row or column. Finally, the blackened squares (with or
without a hint) are like walls and therefore divide the rows. Logically, no bulbs can be
placed on these squares.

To represent the puzzle, the board is a square of predefined size. On this puzzle there are
hints which are designated using the Hints objects. Three different regions have been
created: the "lines", which represent each line where the player can play, the "walls", which
represent all the blackened squares without numbers on them, and the "hints", which are
the blackened squares with a number written on them. From a logical point of view, the
player will place one’s. For the graphic and playful side of the puzzle, the one’s are replaced
by a light bulb for the user. The blackened squares have been greyed out to make them
stand out. All this has been achieved using graphical metadata.

The puzzle conditions are made up of a set of ludemes. First of all, IsSum is applied on the
Walls region so that no light bulbs can be placed. The sum must therefore be zero. Then the
AtMost ludeme is called on each "line" region. So we have a maximum of one light bulb per
region. The condition will then iterate over each hint using a ForAll Hint. This notation
will allow us to move from hint to hint and apply a ludeme to each of them. On each one
will be applied an IsCount to have the right number of light bulbs around these sites. The
regions given as arguments to IsCount are generated using the Sites Around ludeme. This
ludeme creates a region by taking the adjacent squares orthogonally to the square we are
on. Finally, it is mandatory that there is at least one light bulb per region. To do this, each
cell will be checked with a ForAll cell to which AtLeast will be applied with the number
one to ensure that at least one bulb is in the region. The region given as an argument is
created using the Sites Direction ludeme. It will generate a region starting from the cell we
are in, starting orthogonally. The region stops if we encounter a blackened cell.

What’s new about this puzzle is that we will need a minimum or maximum number of
pieces in a region, rather than a precise number. This puzzle is part of the symbol-type
puzzles described in the taxonomy[15].

Figure 4.13: An Empty Akari and its solution

20https://www.nikoli.co.jp/en/puzzles/akari/

4.3 The new puzzles

4

41

4.3.4 Hitori

Hitori21 (fig: 4.14) is a Japanese puzzle diffusied by Nikoli. In this puzzle, you need to block
certain squares so that each values in each row and column are different. If a square is
blocked, you can not block an adjacent one (orthogonally, diagonals are allowed). The
remaining squares must form a single block. You can not divide them into two groups, for
example.

To represent this puzzle, nothing could be simpler: the board is a square of a certain size
with numbers written on it. To place these numbers, hints object are used so that other
number can be place on them. If we set numbers in the starting rules, the square would be
considered solved and therefore not modifiable in the eyes of the system.

For the puzzle conditions, the first is IsConnex. We have not applied any specific numbers
to the rule, as we are putting ones on the plate, which is the base number in the rule. Two
ForAll is used to over the cells. AtMost is applied to checks that two values are not blocked
if these two values are arranged orthogonally. To generate this region, the Sites Around
ludeme is used. Finally, in the end rules, the usual IsSolved rule is applied with the ludeme
AllHintDifferent to check that for each row and each column the value are different. This
rule must be executed at the end of the game, because if we execute it during the game,
the system will consider each move to be false. In effect, the solution would be under
construction.

This new puzzle has been added because it is one of the shading puzzles mentioned in the
taxonomy[15]. These puzzles were not yet present in the Ludii system.

Figure 4.14: An Empty Hitori and its solution

4.3.5 Ripple Effect

Ripple Effect 22 (fig: 4.15) is a number puzzle diffusied by Nikoli. It is a square board where
you have to complete the regions. These regions range in size from a minimum of one up
to a certain size. In the regions, you have to fill in the squares according to the size of the
region. If the region has a size of one, we need to fill in the number one. If the region has
a size of three, yo need to fill in the numbers one, two and three and so on. You need to
make sure that the same numbers are separated by a distance equivalent to that number,
which makes the puzzle more complex.

This puzzle is represented using a square board of a certain size. The regions are defined
using hints. The associated hints are the size of the region. This allows us to define the
21https://www.nikoli.co.jp/en/puzzles/hitori/
22https://www.nikoli.co.jp/en/puzzles/ripple_Effect/

4

42 4 New Rules and New Deduction Puzzle

regions in addition to using the size of the region in our rules. The Ripple Effect has its
own particular graphic style.

For the conditions, the first condition is AllDifferent to ensure that the numbers in a region
are all different. Then the AtMost ludeme is called with the individual attribute. This will
ensure that the number proposed does not exceed the size of the region. Finally, each
cell will be visited in order to apply the IsDistinct ludeme with a certain region and an
integer equivalent to a value associated with the cell. The region is created using the Sites
Direction ludeme to retrieve all the cells orthogonally within a radius the size of the value
associated with the cell. This prevents the player from setting unauthorised numbers based
on his neighbours.

This puzzle has been modelled to develop a new mechanic: blocking numbers in a region.
This puzzle is part of the puzzle symbol category of the taxonomy[15].

Figure 4.15: An Empty Ripple Effect and its solution

4.3.6 Hashiwokakero

Hashiwokakero23 (fig: 4.16) is a Nikoli game. In this puzzle, you try to connect numbers
with the exact number of links needed to match a hint. The links are either one or two. You
can think of them as numbers on a blank page and we want to connect them all vertically
or horizontally to form one group.

To represent this new puzzle, a graph is developed. To do this, each vertex must be defined
using its coordinates. The starting point of the graph is at the bottom left. The first vertex
of the graph will have index zero, the second index one and so on. Then, each possible link
must also be defined using the index of the vertices it connects. Once the graph has been
created, the hints will be added to each vertex. A specific graphic style inspired by the
PenAndPaper style has been created for this puzzle. This style removes the cells from the
display, leaving only the vertices and edges.

Two rules will apply to ensure that the game runs smoothly. Firstly, the links must not
cross. To do this, the IsCrossed ludeme with the keyword not is used. This will ensure that
the links do not cross. Then, all the vertices will be visited to check that the right number
of links are associated with them. This is done using the IsSum ludeme. The link region is
retrieved using the Sites Incident ludeme, which will retrieve all the links around a vertex.
Finally, at the end of the game, in the end rules, we check that we only have one group.
This rule will be executed as an end rule to allow the player to play in various places to
determine pieces of solutions and then assemble them.
23https://www.nikoli.co.jp/en/puzzles/hashiwokakero/

4.3 The new puzzles

4

43

Hashiwokakero was an interesting puzzle to model because, as well as adding to the
catalogue of puzzles modelled in Ludii, it offered a new mechanic with edges that didn’t
involve building a path. This puzzle is in the Path Connection puzzle category in the
taxonomy[15].

Figure 4.16: An Empty Hashiwokakero and its solution

4.3.7 Nonogram

Nonogram24 (fig: 4.17,) also known as Picross, is a game where you have to colour in
squares to make a picture appear. The squares to be coloured are indicated on the left-hand
side of the puzzle for the rows and on the top of the board for the columns. The board to
be completed is either a rectangle or a square of a defined size.

To represent this puzzle, the first step was to modify all the logic associated with hints
in the system. Previously it was only possible to have one hint per region. Now it is
possible to have several per region. To do this, we had to create a new method and a new
constructor in the Hint class. It is now possible to store several hints in an integer array.
This also required a number of changes to the equipment, context, etc. in order to evolve
the data structures so that they could correspond to having several hints. The ludemes
using hints directly also had to be updated as a result of these new changes. The method
for representing hints has also had to be updated, but we will discuss this again in the
graphics section.

The board is shaped like a rectangle of predefined size. The hints are also defined for each
row and column. As in previous games, the player will have either zeros to avoid selecting
the square or ones to select it from a logical point of view. In the eyes of the user, it is not
zeros that will appear but white crosses and it is not ones either but black squares.

For the conditions, only IsMatch is called. This ludeme will generate all the possibilities
for each region in a combinatorial way.

The nonogram is a real challenge to model. This puzzle offers a new vision of hints while
working regionally using the concept of regular expression. It is one of the shading category
puzzles according to the taxonomy[15].

24https://fr.wikipedia.org/wiki/Picross

4

44 4 New Rules and New Deduction Puzzle

Figure 4.17: An Empty Nonogram and its solution

4.3.8 Color Nonogram
Colour Nonogram (fig: 4.18) is, as the name suggests, a variant of nonogram. The aim
of the game and the rules remain the same, except that we no longer complete the board
using black squares but squares of different colours.

The puzzle is represented using the same structure. In other words, the board is a rectangle
with a defined size. The hints are also represented in almost the same way. They now have
a new attribute, which is colour. We have determined a code for representing colours: an
integer corresponds to a colour. Here is the list:

• 0 is a cross

• 1 is Black

• 2 is White

• 3 is Blue

• 4 is Red

• 5 is Yellow

• 6 is Green

• 7 is Orange

• 8 is Purple

This has necessitated new changes to the context and equipment, but these are minimal
compared with the previous changes. The only changes made are to recover the integers
and therefore the colours associated with the hint. From a graphical point of view, the
representation of hints has been modified to include new colours. The player will position
different integers to complete the puzzle. The zeros remain as crosses in the player’s eyes,
while the other integers are squares of different colours.

For the conditions, the IsMatch is also called, but with its Color attribute. This will change
the logic of the code, because it is no longer just zeros and ones that will be laid down, but
different integers representing colours. This makes it possible to generate specific cases to
check whether the solution is still achievable or not.

This puzzle is part of the shading puzzle category in the taxonomy[15]. This puzzle has
been developed as a variant of the nonogram, which has been implemented earlier.

4.3 The new puzzles

4

45

Figure 4.18: An Empty Color Nonogram and its solution

4.3.9 Hexagonal Nonogram
The Hexagonal Nonogram (fig: 4.19) is the second variant of the Nonogram. This puzzle is
the same as the basic puzzle, except that the puzzle is no longer square but hexagonal.

For the representation, rectangles are no longer defined, but a hexagon of size X by X. The
hints are represented in the same way as in the classic game, i.e. one or more hints for the
same region. The hints no longer point North and West, but now indicate three directions:
West, North-East and South-East. From a graphical point of view, the player still places
zeros or ones for logic. Graphically for the player, the zeros are still crosses and the ones
are hexagonal pieces rather than squares.

The IsMatch condition remains functional despite the change in shape, and we don’t call
up the colour attribute.

Like Nonogram, this puzzle is in the shading puzzle category. It uses the same mechanics
as the Nonogram.

Figure 4.19: An Empty Hexagonal Nonogram and its solution

4.3.10 Masyu

Masyu25 (fig: 4.20) is a puzzle where you have to complete a path. The aim of this path is to
pass through all the integers on the board. You don’t necessarily have to pass through all
the vertices. Nikoli has added a difficulty to the puzzle by forcing players to make a certain
move depending on the hint they encounter. If it is a zero, we have to make a straight line,
and if it is a one, we have to make sure that the path is a bend.

This puzzle is represented by a rectangle on which we fill in the edges. This will act as the
path. The hints are used to note the indices on the vertices. From a graphical point of view,
25https://www.nikoli.co.jp/en/puzzles/masyu/

4

46 4 New Rules and New Deduction Puzzle

the PenAndPaper style has been used, which was useful for removing the background of
the board and bringing out the edges and vertices.

For the conditions, the first is the IsValidDirection which has been created for this puzzle.
Depending on the hint encountered, this will force the path created by the player to take a
certain direction (straight ahead if we have a zero, a turn if we have a one). Each vertex
will then be visited to count the number of edges linked to that vertex. Each vertex can
be linked by either zero edges or two edges. We want to have either two edges in order
to make the path and prevent the path from crossing. The second is zero, which allows
solutions to be found without passing through all the vertices. Having two edges per
vertex whenever we want ensures that we have a path and not a group of edges that will
never meet. An iteration will also be carried out on the hints to check that the path passes
through all the hints.

Like the Slitherlink, the Masyu is a path loop puzzle in the puzzle taxonomy[15]. The new
mechanics associated with this puzzle are that the hints are found on vertices rather than
in cells. These hints dictate the direction of the path.

Figure 4.20: An Empty Masyu and its solution

4.3.11 Kurodoko

Kurodoko26 (fig: 4.21) is a puzzle game from Nikoli. In this puzzle, you must place black
blocks in order to block squares. The aim is to rely on the hints present on the board and
create orthogonal regions that have a distance equal to the hint. Note that the square with
the hint is taken into account when calculating the size of the region. Two black blocks
cannot be laid adjacent to each other in an orthogonal direction (diagonals are allowed).

This puzzle is represented using a square of predefined size. From a logical point of view,
these are some ones that will be installed. From a graphic point of view, these ones are
transformed by black blocks. Hints will be represented by object hints. A "Walls" region
will be created, containing all the cells containing a hint. This will make it possible, with
the conditions, not to place a block on these cells.

For the conditions, each cell will be visited to check that two blocks are not blocked adjacent
to each other. IsSum will be applied to the "Walls" region so that no blocks are placed on
these cells. The number given to IsSum will therefore be zero. Each cell with a hint will
be visited with the IsCountEmpty ludeme. This will check that in an orthogonal region,
starting from the cell with the hint, the number of empty cells. This region will be generated
using the Sites Direction ludeme.

26https://www.nikoli.co.jp/en/puzzles/kurodoko/

4.3 The new puzzles

4

47

This puzzle falls into the "position symbol" category, according to the taxonomy[15]. This
puzzle uses the new mechanism of counting the number of empty cells.

Figure 4.21: An Empty Kurodoko and its solution

4.3.12 Usowan

Usowan27 (fig: 4.22) is a game created by Nikoli. In this puzzle, black blocks must be placed
to satisfy the hints. In some areas, there are real and fake hints. These blocks must be
placed around the real hint. Among the rules: if there is a false hint, there can only be one
in a region and it will be along an edge. All uncovered cells must form a single block (a
single component).

To represent this puzzle, a square board of predefined size will be used. Hints will be
represented by Hints objects and regions will also be represented. These regions are not
defined with our Hints objects. The regions include several indices and are therefore defined
manually. From a logical point of view, the player poses the number five. The number five
has been chosen to differentiate it from the false hints, which will have numbers ranging
from one to four. From a graphical point of view, these fives are replaced by black blocks.

At the start of the puzzle, numbers will already be placed on the board to simulate false
hints. Among the conditon during the game, IsSum will be applied to the region containing
the real hints so that it cannot be manipulated. As the false indices are set, it is already
impossible to play on these cells. Each hint will be visited to check the number of blocks
placed orthogonally and adjacently around this hint. These blocks can be counted using
the IsCount ludeme. Finally, uncovered cells are checked if they form a single component
using the IsConnex ludeme.

Usowan is a shading-type puzzle in the puzzle taxonomy[15] and offers a new mechanic
based on the fact that there are true and false hints.

Figure 4.22: An Empty Usowan and its solution

27https://www.nikoli.co.jp/en/puzzles/usowan/

4

48 4 New Rules and New Deduction Puzzle

4.3.13 Big Tour

The Big Tour28 (fig: 4.23) is a puzzle found in the Cross+A29 catalogue. The aim of this
puzzle is to complete a path through all the vertices. Some links are already present on the
board to restrict our movements. The path must be a non-intersecting loop.

The puzzle is represented using a rectangle. The player places edges on the board to form
the path. The PenAndPaper graphic style is used to render the edges and vertices.

At the start, certain edges will be put down to force the player to make certain moves and
find a solution. During the game, each vertex will be visited to ensure that two edges are
connected to the vertex. This will ensure that each vertex is used and that there are no
loops in the solution. The path can only be made up of a single loop, which is what will be
checked.

This puzzle falls into the path loop category of the puzzle taxonomy[15]. Compared with
other puzzles in this category, the path must pass through all the vertices.

Figure 4.23: An Empty Big Tour and its solution

4.3.14 Buraitoraito

In the Buraitoraito30 (fig: 4.24) puzzle, we have to place stars. These stars are placed on
squares not blackened with a number and must correspond to these hints. In the orthogonal
region of these hints, you need to find the exact number of stars present on the hint.

To represent the puzzle, a square board is used. The player will have ones on the board,
which will be represented by stars. Hints will be placed on the board with hints objects. A
region containing all the hints will also be created so that the player cannot play on them.

For the puzzle conditions, each hint will be visited with the IsCount ludeme. This will
count the number of stars in an orthogonal region starting from the hint cell. This region
is obtained via the Sites Direction ludeme. It will stop when it encounters another hint or
the edge of the board.

This puzzle bears a strong resemblance to Akari, as they are in the same category in the
taxonomy[15]. The difference is that there is no longer a maximum of one symbol per
region, but several defined by the hint.

28https://www.cross-plus-a.com/fr/puzzles.htm#GrandTour
29https://www.cross-plus-a.com/fr/puzzles.htm
30https://www.cross-plus-a.com/fr/puzzles.htm#Buraitoraito

4.4 Graphic additions

4

49

Figure 4.24: An Empty Buraitoraito and its solution

4.3.15 Tilepaint

Tilepaint31 (fig: 4.25) is a Nikoli game. It can be seen as a cross between Nonogram and
Kakuro. In effect, you have to colour in squares according to hints in order to make a
drawing appear. In this puzzle, the hints are on the board itself rather than on the side.
Tiles are present on the board. These tiles must be either completely colored or empty.

To represent this puzzle, a square board of predefined size is used. Hints are positioned
using the cell indexes. Tiles are defined by regions, also using cell indexes. From a logical
point of view, the player will place ones, but with the graphic metadata, he will place black
blocks.

Among the condition, colored cells will be counted in each region with a hint. This is
done using the IsSum ludeme. To validate the puzzle, the IsTilesComplete ludeme will be
called in addition to the IsSolved ludeme. This will check that each tile is either empty or
complete.

This shading-category puzzle is a combination of Kakuro and Nonogram mechanics. It
adds tile mechanics.

Figure 4.25: An Empty Tilepaint and its solution

4.4 Graphic additions

4.4.1 what already exists
Certain graphic styles are specific to certain puzzles. In general, a general graphic style
is used, which can be modified with metadatas. Metadatas allow you to customize the
graphic style of each puzzle. Below is the list of available metadata:

31https://www.nikoli.co.jp/en/puzzles/tilepaint/

4

50 4 New Rules and New Deduction Puzzle

Board Style

This metadata will call up a particular style of board. If this metadata is not called up, we
call up the basic puzzle design. It is in this design that we are going to designate the outer
and inner borders of the tray, as well as the filling of the background and the contents of
the cells. We will also detect the hints and draw the regions that these hints comprise. The
hints are also located in the design.

Player Colour

Player Colour is a graphical metadata ludeme that assigns a colour to the player. This is
used to differentiate between players in multi-player games.

Piece Rename

Piece Rename will allow us to change the content that the player will play. In most cases,
the player will play numbers on the board, but we want them to have a particular shape
depending on the puzzle. This metadata will allow us to change these pieces to the shape
we want. (fig: 4.26 & 4.27)

Figure 4.26: Akari with piece rename
metadata

Figure 4.27: Akari without piece rename
metadata

Piece Colour

As with player colour, Piece Colour allows you to change the colour of the pieces you
play. This metadata is preferable if you want to change the colour of several pieces. This
metadata will allow us to change the colour of one piece, whereas the player colour will
change the colour of all the pieces placed by the player. (fig: 4.28 & 4.29)

Figure 4.28: Akari with piece colour metadata Figure 4.29: Akari without piece colour
metadata

4.4 Graphic additions

4

51

Piece Scale

It is sometimes necessary to change the size of the pieces to get a better rendering. To do
this, we call the piece scale with a float. The size of the piece will be multiplied by the float
given as an argument.

Board Placement

As with the pieces, it is sometimes necessary to modify the size of the board, particularly
when we want to place information next to the board. To do this, we call the metadata
Board Placement with a float to reduce or increase the size of the board.

DrawHint Direction

The last metadata used is DrawHint, which takes a keyword indicating a direction as a
parameter. This allows us to change the positions of the indices on the board. The 4 possible
directions are Default (which is in the center of the square), TopLeft (which is the top left
corner of the square), NextTo (which is on the side of the board) or None (which makes the
clue invisible).

Figure 4.30: Nonogram with DrawHint
metadata

Figure 4.31: Nonogram without DrawHint
metadata

4.4.2 Changes to the system
To match the graphic styles of our puzzles as closely as possible, modifications had to be
made to the existing styles.

DrawHint Direction

Sometimes it is necessary to hide hints to make it easier to represent and model the puzzle.
But these hints don’t actually exist in the eyes of the player. To do this, we can use the
DrawHint metadata with the None keyword. As this has not yet been implemented, it was
done during this project. To do this, we simply skip the step of adding the hints to the
board if the None keyword has been chosen.

The Hints

The hints have had to be modified to offer the opportunity to put more than one hint on
the same region. As the structure had changed, we had to modify the retrieval of hints

4

52 4 New Rules and New Deduction Puzzle

for this to work. In addition, we had to add information to the "NextTo" keyword in the
DrawHint graphical metadata to display several hints. To do this, we retrieved the same
part of the code as for displaying a single hint, but we iterated over the list of hints and
applied a distance between each one.

4.4.3 New styles
In addition to the metadata, it is possible to create a specific style for a game if required.
Sudoku, for example, already has a special style that draws out the sub-grids, or Futoshiki,
which removes the background and creates boxes for hints.

Hashiwokakero

For the Hashiwokakero, the use of the “PenAndPaper” style was initially planned. The
special feature of this puzzle is that the puzzle using single or double edges. We have added
detection of the number played by the user, so we have doubled the link if the number is
two. But this has caused a problem in other games. The changes we have made are not
supposed to change the graphic style of other games in Ludii. In two-player games using
this style, the rule is that player one places ones and player two places twos. The problem
was that following our modification, player two was automatically placing double links,
which no longer made sense in terms of representing the puzzle. We therefore created a
style for the Hashiwokakero which is a derivative of the PenAndPaper style and which
makes the double link according to the number encountered. This meant that we didn’t
have to change the style of the other games within the framework, but it also gave us the
best possible representation of the Hashiwokakero.

Hexagonal Nonogram

The hexagonal nonogram needed a particular graphic style. Initially, we updated the Hints
detection for this puzzle. The hints are no longer north and west, but west, north-east
and south-east. Hints will be detected and classified according to the direction in which
they point. This will allow the hints to be positioned in a certain way to represent the
puzzle. Once this detection has been changed, the hints are visible. But a change, like the
hashiwokakero, implies changes for the whole framework.

Ripple Effect

As far as the Ripple Effect is concerned, we have created a graphic style based on that of
Sudoku. We have removed the drawing of the subgrids and, above all, we have changed the
way the regions of our hints are drawn. In fact, in this puzzle, we have regions that must
be visible to the user, and we have decided to implement them as hint regions to simplify
our rules. So, in this unique style, we have modified the regions to have solid black lines
rather than pink dotted lines.

Tilepaint

In Tilepaint, as well as having the same look as Kakuro for our hints, we have tiles on the
board. Since there are already hint regions, we need to add certain elements to detect our

4.5 Ludemeplex

4

53

non-hint regions. To do this, we have created a list of all these regions. We have created an
auxiliary function that will keep all these regions. We will then draw them to represent
these tiles. The style of this puzzle is therefore a derivate of Kakuro’s style with all these
new additions.

Usowan

In this puzzle, we have regions that are not HintRegions. So we have created a graphic
style that takes the detection of non-hint regions and their appearance on the board.

4.5 Ludemeplex
Some puzzle descriptions use the same combination of ludemes. For example, Slitherlink
and BigTour rules must take one and only one path without crossing each other. This rule
is made possible by a combination of ludemes. As this combination is found in different
representations, we decided to make it a ludemplex.

The definition given in Ludii’s Game Logic Guide[21] is as follows: it is useful structures
of component ludemes. These can be defined either:

• globally in their own .def file, in which case they become known defines, or

• locally within any .lud file in which they can be used.

Here are the 4 ludemeplexes we have created:

1. OnlyOneWay: this ludemeplex will run for path loop puzzles. It will check that the
puzzle has been solved and that the path created is the only path (Masyu, Slitherlink,
Big Tour).

Ludeme
1 (define "OnlyOneWay"
2 (and (is Solved) (= (count Groups Edge) 1))
3)

2. EdgesByVertex: this combination of ludemes will ensure that on each vertex we have
X edges to select. It is used for Big Tour puzzle.

Ludeme
1 (define "EdgeByVertex"
2 (forAll Vertex
3 (is Count Edge (sites Incident Edge of:Vertex

at:(from)) #1)
4)
5)

4

54 4 New Rules and New Deduction Puzzle

3. PieceNotAdjacent: this ludemeplex will ensure that two pieces cannot be placed
adjacent to each other. It is used for Hitori puzzle and Kurodoko Puzzle

Ludeme
1 (define "PieceNotAdjacent"
2 (forAll Cell (at Most (sites Around (from) N

includeSelf:True) 1))
3 (forAll Cell (at Most (sites Around (from) E

includeSelf:True) 1))
4)

4. NumberOfEdgeByVertex: this last ludemeplex will ensure that on each vertex we
have either X(#1) edges to select or Y(#2). it is used for Masyu and Slitherlink puzzle

Ludeme
1 (define "NumberOfEdgeByVertex"
2 (forAll Vertex
3 (or
4 (is Count Edge (sites Incident Edge

of:Vertex at:(from)) #1)
5 (is Count Edge (sites Incident Edge

of:Vertex at:(from)) #2)
6)
7)
8)

5

55

5
Testing and Experimentation

In this chapter, we will discuss the various tests we have put in place to check that our
work is working properly. We will then discuss the various experiments we have carried
out on our puzzles. Every test and experiment was carried out on my own machine. This
one is composed of an Intel Evo i5 processor, 16Gb RAM and a graphics card "Intel(R)
Iris(R) Xe". The OS used is a Linux Ubuntu distribution.

5.1 The tests
To complete this work, we had to use various tests. We used a test provided to us to check
the integrity of the puzzles. We also created JUnitTests to check that the ludemes were
working properly.

These different tests are essential to the project. Given that ludemes are objects that can be
modified and improved, we need to be able to determine whether a ludeme has become
false after modification. These different tests will therefore determine whether a puzzle is
no longer solvable or whether a ludeme no longer responds to the different situations with
which it is tested.

5.1.1 Integrity Test
This test will be run for each deduction puzzle we have in the system. To do this, each
puzzle will be launched, and a trial will be run. These trials are a succession of movements
that will be applied to the game to reach the final state. The trial will check that each
movement applied is a legal movement. This is verified by all the rules in the puzzle. These
tests are essential for the evolution of the games, as the test will show us which rule is
blocking the puzzle. In this way, we can see whether a modification or development in our
rules has compromised our puzzles. As well as being able to be run manually, this test will
be run via GitHub Actions. Our project is stored on a public GitHub1 and thanks to these
actions, after each push, we will have this test running in addition to others. As well as
seeing the integrity of the puzzles, this allowed us to see that we had not compromised the
1https://github.com/Cailloux2123/Ludii_Memoire

5

56 5 Testing and Experimentation

rest of the system. In particular, when we created a puzzle, we were able to see that its
name had been duplicated and had therefore rendered the system obsolete.

5.1.2 The JUnitTests

JUnitTests were coded to check the accuracy of our ludemes according to certain scenarios.
To carry out these tests, we used the TDD (Test Driven Development) method[4]. This
method involves writing tests before coding our rules. We coded our scenarios to find out
whether we wanted the ludemes to return True or False. Once the tests were implemented,
we were able to work on the code of the ludemes so that the various tests corresponded to
our ludemes.

In order to make the JUnitTests functional, we had to create a game description to test our
game. This representation will be a five by five square board made up of a region. Trials are
created to represent the different scenarios. To test the gameplay, we will launch the game
with one of these trials (scenarios). We will apply each of the movements (even illegal
ones) to the puzzle. We will create a ludeme object to check whether its method returns
the expected boolean with the puzzle context. This context contains the puzzle after the
various movements applied. We will compare this boolean with the boolean expected in
the scenario to check whether the game system reacts as expected.

5.2 Experiments
We run three different experiments. We are going to analyse the size of the challenges
and the number of possible moves in a given time to see the system’s limitations. We
will also look at the number of tokens present in our game representation. A token is an
element/word in the representation. Parentheses, brackets and other separators are not
included in tokens.

The aim of these various experiments is to determine whether a ludemic representation
can be considered effective. This means that the puzzle is displayed quickly and that the
legal moves are quickly found. These different experiments will therefore highlight the
puzzles that need to be optimised and highlight areas for improvement.

5.2.1 The size of the challenge

For these experiments, we have added challenges to some of our puzzles. Challenges are
new instances of a puzzle. These instances do not change the rules or the way a puzzle
works. They allow you to customise them by changing the numbers setup, the hints on
the board or, in our case, the size of the challenge. With the help of these experiments, we
want to see the limits of our puzzles in the system. To do this, we are going to add puzzles
of different sizes to observe and understand the limits.

To check this, we are going to look at the NQueens puzzle, which is very simple in its
representation, and the Nonogram, which has a complex ludeme: IsMatch.

5.2 Experiments

5

57

Name And Size Execution Time (s)
NQueens 5x5 0.29
NQueens 10x10 0.35
NQueens 15X15 0.99
NQueens 20x20 2.94
NQueens 25x25 6.6

For NQueens, we will see that sizes ranging from 5x5 to 15x15 are displayed very quickly
and that the various movements are also displayed fairly quickly. From instance size 20x20,
the display appears less quickly, as do the moves. From instance size 25x25 onwards, the
graphics are really slow, and the system struggles to detect our movements. This is due to
the radial pre-computation, which we will analyse later.

Name And Size Execution Time (s)
Nonogram 5x5 0.21
Nonogram 10x10 0.68
Nonogram 15X15 9.86
Nonogram 20x20 X

For the Nonogram, we can see that the 5x5 instance is very simple and runs very quickly.
We have the same observation for the 10x10 instance. The 15x15 instance, on the other
hand, takes far too long and is therefore difficult to play. The 20x20 instance does not
appear and causes system slowdowns. This is due to the IsMatch ludeme in the puzzle.

5.2.2 The number of movements in 40 seconds
The aim of this experiment is to compare whether legal moves can be generated efficiently
in the Ludii system. This will help determine whether a puzzle is not efficient enough. To
do this, we will launch an instance of a puzzle (a puzzle challenge). For Nonogram, for
example, it is a nonogram of different sizes with different hints. In the case of Sudoku, it is
a grid with different starting numbers. For each instance of a puzzle, we will launch the
game and make random moves for forty seconds. We will compare the number of moves
made during the forty seconds according to the instance. It is important to note during the
test that if, following random movements, we reach a final state of the puzzle (i.e. solved),
we will restart the puzzle. We carried out the test taking into account:

• The execution time.

• The number of solutions found.

• The number of moves made during 40 seconds.

• The average number of moves per second during the execution time.

5

58 5 Testing and Experimentation

All results can be found in Appendix A (7.1). In this section, results relating to the NQueens
puzzle and the Magic Square puzzle will be presented, as they present the same scenario
as the other puzzles. The Nonogram puzzle will also be presented, as it presents a special
feature.

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

MagicSquare 4x4 40 47,859 1167.61
MagicSquare 5x5 40 13,749 342.70
MagicSquare 10x10 40 186 5.07
MagicSquare 15x15 40 17 0.46

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

NQueens 4x4 40 263,037 6522.68
NQueens 5x5 40 94,595 2347.83
NQueens 10x10 40 2,716 64.14
NQueens 15x15 40 257 6.17

The following observations can be made: the larger the plateau, the fewer the number of
movements performed. This observation is common to all puzzles. It can be explained by
the Ludii system itself. When a puzzle is generated, radial precalculations are performed,
as described in Chapter 2. The larger the board, the more calculations there are before the
puzzle is ready. This justifies the smaller number of moves made on the larger puzzles.

4x4 5x5 10x10 15x15
Size of the instance

0

50000

100000

150000

200000

250000

Nu
m

be
r o

f m
ov

es

The number of movements depends on the size of the board
Magic Square
NQueens

Figure 5.1: The number of movements depends on the size of the board for the Magic Square and the NQueens

A second observation is that for the same size, the number of movements performed is
sometimes very different. This can be explained by the conditions given to the puzzle. The
more calculations there are in the puzzle, the more moves are required to generate the
various legal moves.

5.2 Experiments

5

59

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

Nonogram 5x5 40 75,503 1903.003
Nonogram 10x10 40 573 14.83
Nonogram 15x15 46.22 7 0.159
Nonogram 20x20 1208.42 1 8.49E-4

We can see that the larger the Nonogram, the longer it takes to make a movement. When
we have a Nonogram of size 5 by 5, the system can make 75,503 movements in forty seconds.
When we have a Nonogram of size 10 by 10, we only have 573 movements made. That is
131 times less movement. We never see such a difference in movement in other puzzles.
Nonograms of size 20 by 20 are a very different case. This one takes around 1200 seconds,
i.e. twenty minutes, to complete a single movement. The problem comes from the gameplay
in IsMatch. This ludeme will generate all the possibilities for a region in a combinatorial
way. If at least one solution is found (i.e. matches the hints) then the puzzle will return
True. We have tried to keep the main idea of this puzzle by generating cases and using
regular expression to check our hints and cases. One optimisation we propose is to limit
this search. To do this, we will check whether we have several hints on the same region. If
this is the case, we will only generate cases where the start of our case corresponds to our
first hint. This will allow us to limit the search by reducing the number of cases generated
and explored. Here are the numbers after optimisation:

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

Nonogram 5x5 40 111,377 2784.425
Nonogram 10x10 40 787 19.675
Nonogram 15x15 42.498 9 0.225
Nonogram 20x20 948.91 1 0.025

5x5 10x10 15x15 20x20
Size of the Nonogram instance

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f m
ov

es

The number of movements depends on the size of the board
Nonogram Before Optimisation
Nonogram after Optimisation

Figure 5.2: Number of move during 40 seconds by instance

5

60 5 Testing and Experimentation

5x5 10x10 15x15 20x20
Size of the Nonogram instance

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
Ti

m
e

(s
)

The time execution depends on the size of the board
Nonogram Before Optimisation
Nonogram after Optimisation

Figure 5.3: time execution by instance

We can see that for the 5 by 5 Nonogram, we have more or less 111,000 movements during
the forty seconds. For the other instances, we still have a big drop in movement, but we are
still seeing improvements. The most remarkable difference is for the 20 by 20 nonogram.
It is still unusable at the moment because it still takes too long to calculate all the cases,
but we have saved a total of 250 seconds on puzzle generation. To be sure, we would still
have to optimise the puzzle by changing the logic of the puzzle and no longer generating
the cases, but this would make the regular expressions unusable. As shown by [3], solving
the Nonogram is very complex. A human solving the game will not take into account all
the information on the board, whereas an algorithm will have to generate and combine
everything. So when we have bigger puzzles, we need to do a lot more calculations. There
is an additional difficulty. In the task of creating and modelling a puzzle, we don’t want
to solve the puzzle, we want to offer the players the moves they are allowed to make. We
don’t generate the moves that give a solution, but all the moves that don’t go against the
rules The Ludii system will not try to find a solution by proposing a single path. It will
explore all the moves in order to propose all the possible legal moves. This is much more
complex than offering a single resolution path.

5.2.3 Analysis and similarity
The first two experiments (the size of the challenge and the number of movements in forty
secondes) propose similarities in their results. The longer an instance takes to load, the
fewer movements the test can perform. This can be explained by two factors that we have
already mentioned:

• Radials: this pre-calculation, carried out when the puzzle is generated, calculates the
position of the squares in the same regions as them to facilitate certain movements.

• The efficiency of a ludeme, which will take more or less time to execute and complete
its task.

These two factors limit the display and use of certain puzzle sizes. That is why it is
imperative that our games are as effective as possible.

5.2 Experiments

5

61

This paper [5] proposes a different approach to solving the Nonogram. In the solver
they have developed, they consider the Nonogram to be a single line. They add new
information to a PriorityQueue (which represents this single line) in order to find new
solutions. They then use probing algorithms to find the solutions to the puzzle in their
search tree. Ludii could take inspiration from this solution by representing the Nonogram
differently. Currently, the different rows and columns are compared to regular expressions
in order to create the movements allowed in the puzzle and determine when a solution
is found. Using another representation, it would be possible to determine the different
constraints of the puzzle instance (based on its hints) and determine the legal moves. Ludii,
unlike the solver developed in [5], will generate all the legal moves using the different
constraints. It is the player who will use these moves to find a solution. Once a solver
has been implemented, it will retrieve the various constraints (ludemes) in order to find a
solution efficiently. But for this to be possible, we need to optimise the representation of
these constraints, including those of the nonogram which, as the figures show, take too
long to calculate and are therefore available to the player or a possible solver.

5.2.4 The number of tokens per representation

The number of tokens shows whether or not a ludemic representation is clear. This test
will count the number of tokens in a ludemic representation of a puzzle. The results of this
experiment can be found in Appendix B (7.2). Here are some numbers:

Name 𝑁 𝑏𝑟𝑂𝑓 𝑇 𝑜𝑘𝑒𝑛𝑠

Latin Square 30
Sudoku 74

Center Dot Sudoku 105
Flower Sudoku 1007
Butterfly Sudoku 1059
Kazaguruma 1602

The shorter the description, the more understandable it will be. That is why every de-
scription should be as short as possible. Looking at the figures (fig: 5.4), puzzles like Latin
Square are really simple to understand because few tokens are used. But these numbers
can be quite high, as in the Kazaguruma puzzle. This is justified by the number of elements
to be defined for a puzzle. Kazaguruma uses a very large board in which you have to define
a lot of regions manually. This justifies its large number of tokens.

A second observation confirms the first. In Sudoku, seventy-four tokens are used. For these
variants, new elements need to be implemented. Center Dot Sudoku, for example, has a
new region compared with classic Sudoku. This is why the puzzle has one hundred and
five tokens. In the bigger variants with larger boards and therefore more regions, such as
Flower Sudoku or Butterfly Sudoku, there are many more elements to define. This explains
why these two puzzles use more than a thousand tokens.

5

62 5 Testing and Experimentation

Lat
in

Sq
ua

re

Su
do

ku

Cen
ter

 Dot
Su

do
ku

Flo
wer

Su
do

ku

Butt
erf

ly S
ud

oku

Ka
zag

uru
ma

Puzzle

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f t
ok

en
s

Number of tokens by puzzle

Figure 5.4: Number of tokens by puzzle

6

63

6
Future work in connection

with this thesis

6.1 General Game Playing and Constraint Program-
ming to Solve any Logic Puzzles: Tom Doumont’s
Thesis

Our part with the deduction puzzles was to create and model them. So we took care of
the logic with the game equipment and the rules to make it work. Another interesting
point should be the solving of these puzzles. This would be done using a solver and XCSP
constraints[20]. This research work is being carried out by another student, Tom Doumont.
This work will retrieve our new ludemes and convert them into XCSP constraints. This
will enable the puzzles in Ludii to be solved in different solvers like Choco1 or Ace2. Oscar3
and minicp4 should also be used. The answers provided by the solver can be reused in
Ludii to create AIs to solve puzzles.

6.2 Possible future work
6.2.1 Addition of many other games and new rules
Looking at the taxonomy of the puzzles[15], we can see that we worked with different
categories. Deduction puzzles fall into the abstract category of this taxonomy. Before our
additions, we only had puzzles in the following categories:

• Position with Symbols like Sudoku (fig: 3.1), Kakuro (fig: 3.3) or NQueens (fig: 3.6)

• Path with Loop for Slitherlink(fig: 3.9). It’s the only one of its kind.
1https://choco-solver.org/
2https://www.cril.univ-artois.fr/en/software/ace/
3https://webperso.info.ucl.ac.be/ pschaus/oscar.html
4http://www.minicp.org/

6

64 6 Future work in connection with this thesis

In the following figures (fig: 6.1 & 6.2 & 6.3 & 6.4 & 6.5), the blue nodes represent the
puzzles and categories already in the Ludii system. In red are all our contributions.

After the additions, the different puzzles cover five categories. We have completed the two
existing categories with:

• Position with Symbols with, for example Centre Dot Sudoku, Akari and Buraitoraito
(fig: 6.1).

Position Symbol

Sudoku (& variantes) Kakuro Magic Square

Magic Hexagon NQueens Fill A Pix

Futoshiki Latin Square Squaro

Takuzu Windoku Center Dot Sudoku

Jigsaw Asterisk Sudoku Girandola

Sudoku DG Flower Sudoku Kazaguruma

Sohei Sudoku Butterfly Sudoku Akari

Ripple Effect Buraitoraito

Figure 6.1: Position Symbol Category

• New Path category puzzles with Loop are also available, including Big Tour and
Masyu (fig:6.2).

Path Loop

Slitherlink Masyu BigTour

Figure 6.2: Path Loop Category

The new categories include :

• Shading Binary Contiguous puzzles with, for example Hitori, Nonogram or Tilepaint
(fig: 6.3).

6.2 Possible future work

6

65

Shading Binary Contiguous

Nonogram Hexagonal Nonogram Hitori

Tilepaint Usowan Kurodoko

Figure 6.3: Shading Binary Contiguous Category

Shading Multi Contiguous

Color Nonogram

Figure 6.4: Shading Multi Contiguous Category

• Shading Multi Contiguous puzzles with the Color Nonogram (fig: 6.4).

• Path Connection-style puzzles with Hashiwokakero (fig: 6.5).

Path Connection

Color Hashiwokakero

Figure 6.5: Path Connection Category

Despite all the additions, many other puzzles in these five categories can still be added
(Yajilin5 or Suraromu6, for example). To do this, you will need to add new conditions and
mechanics to the puzzles. For example, it is now possible to have several hints that also
use an attribute to determine a colour. Adding a new attribute to the hint object would
make it possible to add a direction to the hints.

In addition, Path Vector and Position Shape puzzles are not yet covered. In the implemen-
tation paths, a direction method should be implemented in order to implement vectors as
playable pieces. For Position Shape puzzles, a geometric shape detection method would
greatly help their implementation.

These different themes have not been implemented, mainly due to a lack of time. Imple-
menting new ludemes like IsMatch, for example, sometimes takes a lot of time. Changes
sometimes have to be made to the system and, above all, each implementation has to be
efficient and optimised.

5https://www.nikoli.co.jp/en/puzzles/yajilin/
6https://www.nikoli.co.jp/en/puzzles/suraromu/

6

66 6 Future work in connection with this thesis

6.2.2 Creating AI to solve puzzles
Ludii has a built-in AI system. For example, it is possible to test AIs on various games
such as chess or Go. At present, the AIs in the system are not trained to solve deduction
puzzles. The development of solving elements using deep reinforcement learning can prove
interesting. As shown in [1], it uses two learning techniques to solve Sudoku. They use
Convolutional Neural Networks and Bidirectional LSTMs. In their study, they demonstrate
the effectiveness of this approach in solving a puzzle such as Sudoku. The approach using
Convolutional Neural Networks produced the best results. This theme could be extended
to several puzzles in order to solve them. Learning techniques could therefore compensate
for the fact that search algorithms are inadequate. Another approach in the same theme
would be to combine search algorithms and Deep Learning algorithms. As shown in
[19], it is possible to solve the Jigsaw puzzle (a variant of Sudoku) using the Monte Carlo
search algorithm. In this study, this algorithm is trained using a deep learning method
that also uses the Neural Network concept. This is why it is important that the puzzles are
compatible with the design of AI agents, as this would enable new studies to be carried out
in Ludii.

6.2.3 Generating new instances
At the moment, to add new instances, we have to create them ourselves, and we don’t
yet have a way of automatically checking that our new instance is functional and leads
to a solution. Once the solver is up and running, we could imagine a puzzle generation
system that would generate new instances. This system would take the information from
the puzzle, create an instance of the puzzle and check that it is correct. If it is, the system
would remove certain information from the puzzle and offer it to the players. In this way,
Ludii could offer a multitude of Sudoku grids or other puzzles to players.

In [32], the authors describe the concept of Precedural Content Generation (PCG). This
corresponds to the creation of game content using algorithmic means. It would be inter-
esting to take this concept and apply it to puzzles. In this way, puzzle generation would
propose a complete instance with, for example, new regions, new hints, etc. The puzzle
would be proposed on condition that it had at least one solution. In the same vein, LLMs
(Large Language Models)7 could be used. An LLM will take an input and generate elements
according to probability. This is defined by training the LLM. It will propose an appropriate
response to the request using the elements generated. The training must therefore be
appropriate to the different puzzle concepts.

If this generation sees the light of day, it could have an impact on the industrial world. It
would make it easy to have a very large number of instances of a puzzle. What’s more, it
could help companies like Nikoli who, even today, create each instance manually.

7https://en.wikipedia.org/wiki/Large_language_model

7

67

7
Conclusion

To conclude this thesis, the approach has enabled us to model twenty-three new puzzles and
add ten new ludemes (new mechanics). According to the taxonomy[15], the two existing
categories are composed of new puzzles and three new categories are now available in the
Ludii system. In addition to the new puzzles and new mechanics, new graphic styles have
been introduced to ensure that each puzzle is modelled as closely as possible to its paper
version. All the deduction puzzles in Ludii (old and new) can be found in Appendix C (7.3).

These various additions had to be tested to ensure that each new ludemes was effective
and that the edemic representations of the puzzles were as clear as possible. As shown
by the first two experiments, the use of each gameplay element is rapid, as each puzzle
can perform a large number of moves in forty seconds. When the instances are larger, the
number of moves performed decreases, but this is due to the pre-calculation in the system
itself and is not linked to the game. The only puzzle with a different obsevation is the
Nonogram. The ludeme in this puzzle performs too much calculation (because it generates
cases in a combinatorial way). This is therefore an area for improvement. In the second
experiment, all the puzzles had a fairly short description, which made the puzzle easy to
understand. The most extensive ludemic representations come from the need to define a
large number of elements, such as regions, in the puzzle.

All these contributions should be available in the next release of the Ludii system. This
thesis will therefore have enabled us to make a contribution to an international open-source
project.

Now that the puzzles can be modelled for the most part, others are not yet. New mechanics
will have to be added to the system in order to be able to model them. Now that the
modelling of different categories of puzzles is possible, there is a solving section to be done.
This will be done by converting them to XCSP so that they can be solved using different
solvers. This section is currently being developed in another thesis: General Game Playing
and Constraint Programming to Solve any Logic Puzzles.

69

Bibliography

References
[1] Akin-David, C. and Mantey, R. (2018). Solving sudoku with neural networks.

[2] Apt, K. (2003). Principles of constraint programming. Cambridge university press.

[3] Batenburg, K. J. and Kosters, W. A. (2009). Solving nonograms by combining relaxations.
Pattern Recognition, 42(8):1672–1683.

[4] Beck, K. (2022). Test driven development: By example. Addison-Wesley Professional.

[5] Berend, D., Pomeranz, D., Rabani, R., and Raziel, B. (2014). Nonograms: Combinatorial
questions and algorithms. Discrete Applied Mathematics, 169:30–42.

[6] Boussemart, F., Lecoutre, C., Audemard, G., and Piette, C. (2016). Xcsp3: an inte-
grated format for benchmarking combinatorial constrained problems. arXiv preprint
arXiv:1611.03398.

[7] Browne, C. (2013). Deductive search for logic puzzles. In 2013 IEEE Conference on
Computational Inteligence in Games (CIG), pages 1–8. IEEE.

[8] Browne, C. (2016). A class grammar for general games. In International Conference on
Computers and Games, pages 167–182. Springer.

[9] Browne, C., Piette, É., Stephenson, M., and Soemers, D. J. (2021). General board
geometry. In Advances in Computer Games, pages 235–246. Springer.

[10] Browne, C., Soemers, D., Piette, E., Stephenson, M., and Crist, W. (2020). Ludii language
reference. PhD thesis, Maastricht University.

[11] Browne, C., Soemers, D. J., Piette, É., Stephenson, M., Conrad, M., Crist, W., Depaulis,
T., Duggan, E., Horn, F., Kelk, S., et al. (2019). Foundations of digital arch {\ae} oludology.
arXiv preprint arXiv:1905.13516.

[12] Browne, C. B. (2008). Automatic generation and evaluation of recombination games.
PhD thesis, Queensland University of Technology.

[13] Crawford, B., Castro, C., and Monfroy, E. (2009). Solving Sudoku with Constraint
Programming, volume 35, pages 345–348.

[14] Crist, W., Piette, E., Soemers, D. J., Stephenson, M., and Browne, C. (2022). Computa-
tional approaches for recognising and reconstructing ancient games: The case of ludus
latrunculorum.

70 Bibliography

[15] Hufkens, L. V. and Browne, C. (2019). A functional taxonomy of logic puzzles. In 2019
IEEE Conference on Games (CoG), pages 1–4. IEEE.

[16] Kowalski, J., Mika, M., Sutowicz, J., and Szykuła, M. (2019). Regular boardgames. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1699–1706.

[17] Liu, C., Huang, S., Naying, G., Khalid, M. N. A., and Iida, H. (2022). A solver of single-
agent stochastic puzzle: A case study with minesweeper. Knowledge-Based Systems,
246:108630.

[18] Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Genesereth, M. (2008). General
game playing: Game description language specification.

[19] Paumard, M.-M., Tabia, H., and Picard, D. (2023). Alphazzle: Jigsaw puzzle solver with
deep monte-carlo tree search. arXiv preprint arXiv:2302.00384.

[20] Piette, C., Piette, E., Stephenson, M., Soemers, D. J., and Browne, C. (2019a). Ludii and
xcsp: playing and solving logic puzzles. In 2019 IEEE Conference on Games (CoG), pages
1–4. IEEE.

[21] Piette, É., Browne, C., and Soemers, D. J. (2021a). Ludii game logic guide. arXiv
preprint arXiv:2101.02120.

[22] Piette, É., Crist, W., Soemers, D. J., Rougetet, L., Courts, S., Penn, T., and Morenville,
A. (2024). Gametable cost action: kickoff report. ICGA Journal, (Preprint):1–17.

[23] Piette, E., Rougetet, L., Crist, W., Stephenson, M., Soemers, D., and Browne, C. (2021b).
A ludii analysis of the french military game. In XXIII Board Game Studies.

[24] Piette, E., Soemers, D. J., Stephenson, M., Sironi, C. F., Winands, M. H., and Browne,
C. (2019b). Ludii–the ludemic general game system. arXiv preprint arXiv:1905.05013.

[25] Piette, E., Stephenson, M., Soemers, D. J., and Browne, C. (2019c). An empirical
evaluation of two general game systems: Ludii and rbg. In 2019 IEEE Conference on
Games (CoG), pages 1–4. IEEE.

[26] Pitrat, J. (1968). Realization of a general game-playing program. In IFIP congress (2),
pages 1570–1574.

[27] Sedgewick, R. and Wayne, K. (2011). Algorithms, forth edition.

[28] Simonis, H. (2008). Kakuro as a constraint problem. Proc. seventh Int. Works. on
Constraint Modelling and Reformulation.

[29] Soemers, D., Piette, É., Stephenson, M., and Browne, C. (2022). Ludii user guide. Tech-
nical report, Technical report, Maastricht University. https://ludii. games/downloads

[30] Soemers, D. J., Piette, É., Stephenson, M., and Browne, C. (2021). Optimised playout
implementations for the ludii general game system. In Advances in Computer Games,
pages 223–234. Springer.

References 71

[31] Stephenson, M., Piette, E., Soemers, D. J., and Browne, C. (2019). An overview of the
ludii general game system. In 2019 IEEE Conference on Games (CoG), pages 1–2. IEEE.

[32] Togelius, J., Yannakakis, G. N., Stanley, K. O., and Browne, C. (2011). Search-based pro-
cedural content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):172–186.

73

Appendix

7.1 Appendix A : Result experiement size of chal-
lenge

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

Tridoku 40 10,930 273.23
Magic Square 3x3 40 248,816 6,085.82
Magic Square 4x4 40 47,859 1,167.61
Magic Square 5x5 40.001 13,749 342.70
Magic Square 6x6 40.003 3,385 90.72
Magic Square 7x7 40.02 1,430 38.52
Magic Square 8x8 40.03 672 18.20
Magic Square 9x9 40.01 340 9.21
Magic Square 10x10 40.02 186 5.07
Magic Square 11x11 40.20 107 2.92
Magic Square 12x12 40.34 64 1.73
Magic Square 13x13 40.37 40 1.08
Magic Square 14x14 41.22 26 0.68
Magic Square 15x15 40.56 17 0.46

Hitori 6x6 40 42,105 1,053.28
Hitori 10x10 40 5,070 122.32
Hitori 8x8 40 12,954 316.24
Hitori 5x5 40 88,243 2,194.97
Hitori 10x10 40 5,053 122.39
Hitori 15x15 40.02 908 21.63
Hitori 20x20 40.15 246 6.12
Takuzu 10x10 40 33,589 824.51
Takuzu 12x12 40 19,437 482.26
Takuzu 14x14 40 7,643 186.53
Takuzu 20x20 40 2,382 58.42
Kakuro 4x4 40 247,779 5,997.17
Kakuro 6x6 40 54,391 1,323.77
Kakuro 11x11 40 7,384 182.31
Kakuro 17x17 40.03 1,287 31.89
Kakuro 31x31 40.19 130 3.21
Kakuro 14x12 40 3,628 89.61
Kakuro 12x10 40 6,713 165.71

74 Appendix

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

Sudoku DG 9x9 40 6,418 160.37
Sudoku DG 9x9 40 6,490 162.27
Nonogram 5x5 40 75,503 1903.003
Nonogram 10x10 40.03 573 14.83
Nonogram 15x15 44.1 7 0.16
Nonogram 20x20 1,177.35 1 8.49E-4
Sudoku Mine 9x9 40 7,649 191.22
Girandola 9x9 40 7,566 189.03
Girandola 9x9 40 7,179 179.24
Fill A Pix 9x9 40 4,243 106.05
Kurodoko 7x7 40 21,788 532.93
Kurodoko 9x9 40 5,063 121.03
Kurodoko 9x9 40 5,324 130.96
Jigsaw 9x9 40 9,626 241.27
Jigsaw 9x9 40 9,107 228.12

Slitherlink 5x5 40 80,193 2,004.11
Slitherlink 7x7 40 20,178 503.37
Slitherlink 8x8 40 13,064 327.93
Slitherlink 11x11 40 3,158 78.55
Slitherlink 16x16 40.06 571 14.28
Slitherlink 21x21 40.1 160 3.96
Slitherlink 31x26 40.02 35 0.85
Slitherlink 31x46 40.36 8 0.15
Butterfly Sudoku 40 4,123 103.07
Killer Sudoku 40 3,185 79.62
NQueens 4x4 40 263,037 6,522.68
NQueens 5x5 40 94,595 2,347.83
NQueens 6x6 40 40,149 988.94
NQueens 7x7 40 18,250 447.65
NQueens 8x8 40 8,992 218.98
NQueens 9x9 40 4,783 115.59
NQueens 10x10 40 2,716 64.13
NQueens 11x11 40 1,596 37.47
NQueens 12x12 40 957 22.55
NQueens 13x13 40.01 599 14.22
NQueens 14x14 40.01 385 9.22
NQueens 15x15 40.03 257 6.17
NQueens 16x16 40.04 176 4.22
NQueens 17x17 40.05 122 2.92
NQueens 18x18 40.05 88 2.12
NQueens 19x19 40.48 64 1.58
NQueens 20x20 40.62 49 1.18
NQueens 21x21 40.59 37 0.88
NQueens 22x22 40.79 28 0.68
NQueens 23x23 41.69 22 0.52
NQueens 24x24 41.36 17 0.41
NQueens 25x25 42.83 14 0.32

7.1 Appendix A : Result experiement size of challenge 75

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

NQueens 26x26 42.07 11 0.26
NQueens 27x27 43.3 9 0.21
NQueens 28x28 42.02 7 0.16
NQueens 29x29 43.32 6 0.14
NQueens 30x30 44.99 5 0.11

Akari 7x7 40 44,157 1,113.79
Akari 7x7 40 39,646 1,008.87
Akari 14x14 40 1,984 50.45
Akari 25x25 40.04 101 2.4
Kazaguruma 40.04 988 24.68

Asterisk Sudoku 40 10,246 252.88
Asterisk Sudoku 40 9,068 225.57
Samurai Sudoku 40 774 19.35
Hashiwokakero 17 40 222,952 5,560.72
Hashiwokakero 25 40 111,585 2,796.31
Hashiwokakero 33 40 67,637 1,700.64
Hashiwokakero 89 40 7,831 196.64
Big Tour 10x10 40 18,319 457.95

Hexagonal Nonogram 3x3 40 104,105 2,602.60
Color Nonogram 5x5 40.03 872 21.78

Sudoku X 9x9 40 8,260 206.47
Windoku 9x9 40 9,485 233.81
Windoku 9x9 40 11,416 282.93
Masyu 7x7 40 28,804 716.12
Masyu 8x8 40 17,193 429.34
Masyu 10x10 40 5,477 135.45
Flower Sudoku 40.01 2,064 51.58
Magic Hexagon 40 27,063 676.56
Latin Square 2x2 40 2,675,284 66,802.16
Latin Square 3x3 40 752,986 18,659.16
Latin Square 4x4 40 259,712 6,437.39
Latin Square 5x5 40 110,755 2,768.80
Latin Square 6x6 40 55,210 1,371.62
Latin Square 7x7 40 29,439 730.13
Latin Square 8x8 40 13,469 332.61
Latin Square 9x9 40 7,979 198.41
Latin Square 10x10 40.01 4,925 122.56
Latin Square 11x11 40.01 3,197 79.65
Latin Square 12x12 40.01 2,126 52.98
Latin Square 13x13 40.01 1,445 35.95
Latin Square 14x14 40.03 1,017 25.22
Latin Square 15x15 40 729 18.19
Latin Square 16x16 40.03 377 9.37
Latin Square 17x17 40.02 280 6.98
Latin Square 18x18 40.11 209 5.19
Latin Square 19x19 40.16 160 4.02
Latin Square 20x20 40.25 123 3.03

76 Appendix

Name And Size Execution Time (s) 𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑁 𝑏𝑟𝑂𝑓𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

Latin Square 21x21 40.30 97 2.45
Latin Square 22x22 40.24 79 1.95
Latin Square 23x23 40.63 64 1.57
Latin Square 24x24 40.43 52 1.27
Latin Square 25x25 40.40 42 1.03
Latin Square 26x26 40.76 35 0.85
Latin Square 27x27 40.75 29 0.70
Latin Square 28x28 40.28 24 0.59
Latin Square 29x29 40.17 24 0.49
Latin Square 30x30 40.49 17 0.42

Buraitoraito 40 12,258 306.45
Squaro 40 115,408 2,885.19
Sujiken 40 33,443 836.06

Anti-Knight Sudoku 40 1,349 33.72
RippleEffect 7x7 40 18,440 463.49
RippleEffect 7x7 40 15,975 402.22
RippleEffect 6x6 40 31,225 792.36
RippleEffect 10x10 40 4,244 107.44
RippleEffect 17x17 40.08 328 8.23

Hoshi 17x17 40.08 27,285 682.10
Tilepaint 5x5 40 1,055,809 26,132.17
Tilepaint 11x11 40 90,332 2,242.68
Tilepaint 11x11 40 88,527 2,209.35
Tilepaint 16x16 40 23,370 584.26
Sohei Sudoku 40.02 1,387 34.65

Center Dot Sudoku 9x9 40.02 11,050 273.95
Center Dot Sudoku 9x9 40.02 7,839 194.26

Usowan 40 275,256 6,881.4
Futoshiki 40 80,932 1,943.35
Futoshiki 40 71,503 1,753.47
Sudoku 9x9 40 8,694 217.37
Sudoku 9x9 40 10,848 269.10

7.2 Appendix B : Result experiment the number of token 77

7.2 Appendix B : Result experiment the number of
token

Name 𝑁 𝑏𝑟𝑂𝑓 𝑇 𝑜𝑘𝑒𝑛𝑠

Tridoku 267
Magic Square 36

Hitori 141
Takuzu 82
Kakuro 61

Sudoku DG 184
Nonogram 126

Sudoku Mine 105
Girandola 99
Fill A Pix 157
Kurodoko 83
Jigsaw 185

Slitherlink 73
Butterfly Sudoku 1059
Killer Sudoku 178
N Queens 36
Akari 210

Kazaguruma 1602
Color Nonogram 150
Asterisk Sudoku 100
Samurai Sudoku 1113
Hashiwokakero 180

Big Tour 92
Hexagonal Nonogram 154

Sudoku X 95
Windoku 132
Masyu 101

Flower Sudoku 1007
Magic Hexagon 104
Latin Square 30
Buraitoraito 153

Squaro 123
Sujiken 268

Anti-Knight Sudoku 108
RippleEffect 132

Hoshi 336
Tilepaint 113

Sohei Sudoku 1402
Center Dot Sudoku 105

Usowan 105
Futoshiki 65
Sudoku 74

78 Appendix

7.3 Appendix C : All the deduction puzzles in Ludii

(a) Antiknight
Sudoku

(b) Killer Sudoku (c) Samourai
Sudoku

(d) Sudoku Mine

(e) Sudoku X (f) Tridoku (g) Hoshi (h) Sujiken

(i) Sudoku (j) Kakuro (k) Magic Square (l) Magic Hexagon

7.3 Appendix C : All the deduction puzzles in Ludii 79

(a) NQueens (b) Fill A Pix (c) Futoshiki (d) Slitherlink

(e) Latin Square (f) Squaro (g) Takuzu (h) Center Dot Sudoku

(i) Windoku (j) Jigsaw (k) Asterisk Sudoku (l) Girandola

(m) Sudoku DG (n) Flower Sudoku (o) Kazaguruma (p) Sohei Sudoku

80 Appendix

(a) Butterfly Sudoku (b) Akari (c) Hitori (d) Ripple Effect

(e) Hashiwokakero (f) Nonogram (g) Color Nonogram (h) Hexagonal Nonogram

(i) Masyu (j) Kurodoko (k) Usowan (l) Big Tour

(m) Buraitoraito (n) Tilepaint

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

